A Review on Machine Learning for Arterial Extraction and Quantitative Assessment on Invasive Coronary Angiograms

被引:0
作者
Baral, Pukar [1 ]
Zhao, Chen [2 ]
Esposito, Michele [3 ]
Zhou, Weihua [4 ,5 ]
机构
[1] Michigan Technol Univ, Dept Appl Comp, Houghton, MI 49931 USA
[2] Kennesaw State Univ, Dept Comp Sci, Marietta, GA USA
[3] Med Univ South Carolina, Dept Cardiol, Charleston, SC USA
[4] Michigan Technol Univ, Inst Comp & Cyber Syst, Ctr Biocomp & Digital Hlth, 1400 Townsend Dr, Houghton, MI 49931 USA
[5] Michigan Technol Univ, Hlth Res Inst, 1400 Townsend Dr, Houghton, MI 49931 USA
基金
美国国家卫生研究院;
关键词
Invasive coronary angiography; Machine learning; Deep learning; Segmentation; Fractional flow reserve; DIAGNOSTIC PERFORMANCE; COMPUTED-TOMOGRAPHY; SEGMENTATION;
D O I
10.1007/s12410-024-09596-6
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose of ReviewRecently, machine learning (ML) has developed rapidly in the field of medicine, playing an important role in disease diagnosis and treatment. Our aim of this paper is to provide an overview of the advancements in ML techniques applied to invasive coronary angiography (ICA) for segmentation of coronary arteries and quantitative evaluation, such as stenosis detection and fractional flow reserve (FFR) assessment.Recent FindingsMachine learning techniques are used extensively along with ICA for the segmentation of arteries and quantitative evaluation of stenosis and measurement of FFR, representing a trend towards using computational methods for enhanced diagnostic precision in cardiovascular medicine.SummaryVarious research studies with different algorithms and datasets have been conducted in this field. The performance of these studies largely depends on the algorithms employed and the datasets used for training and validation. However, despite the progress made, there remains a need for ML algorithms that can be easily integrated into clinical practice.
引用
收藏
页码:93 / 105
页数:13
相关论文
共 61 条
  • [1] Avram R, 2023, Evaluation of Stenoses Using AI Video Models Applied to Coronary Angiographies, DOI [10.21203/rs.3.rs-3610879/v1, DOI 10.21203/RS.3.RS-3610879/V1]
  • [2] CathAI: fully automated coronary angiography interpretation and stenosis estimation
    Avram, Robert
    Olgin, Jeffrey E.
    Ahmed, Zeeshan
    Verreault-Julien, Louis
    Wan, Alvin
    Barrios, Joshua
    Abreau, Sean
    Wan, Derek
    Gonzalez, Joseph E.
    Tardif, Jean-Claude
    So, Derek Y.
    Soni, Krishan
    Tison, Geoffrey H.
    [J]. NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [3] Automated Assessment of Cardiac Systolic Function From Coronary Angiograms With Video-Based Artificial Intelligence Algorithms
    Avram, Robert
    Barrios, Joshua P.
    Abreau, Sean
    Goh, Cheng Yee
    Ahmed, Zeeshan
    Chung, Kevin
    So, Derek Y.
    Olgin, Jeffrey E.
    Tison, Geoffrey H.
    [J]. JAMA CARDIOLOGY, 2023, 8 (06) : 586 - 594
  • [4] Automatic multiscale vascular image segmentation algorithm for coronary angiography
    Carballal, Adrian
    Novoa, Francisco J.
    Fernandez-Lozano, Carlos
    Garcia-Guimaraes, Marcos
    Aldama-Lopez, Guillermo
    Calvino-Santos, Ramon
    Manuel Vazquez-Rodriguez, Jose
    Pazos, Alejandro
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2018, 46 : 1 - 9
  • [5] Automatic Segmentation of Coronary Arteries in X-ray Angiograms using Multiscale Analysis and Artificial Neural Networks
    Cervantes-Sanchez, Fernando
    Cruz-Aceves, Ivan
    Hernandez-Aguirre, Arturo
    Alicia Hernandez-Gonzalez, Martha
    Eduardo Solorio-Meza, Sergio
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (24):
  • [6] Assessment of fractional flow reserve in intermediate coronary stenosis using optical coherence tomography-based machine learning
    Cha, Jung-Joon
    Nguyen, Ngoc-Luu
    Tran, Cong
    Shin, Won-Yong
    Lee, Seul-Gee
    Lee, Yong-Joon
    Lee, Seung-Jun
    Hong, Sung-Jin
    Ahn, Chul-Min
    Kim, Byeong-Keuk
    Ko, Young-Guk
    Choi, Donghoon
    Hong, Myeong-Ki
    Jang, Yangsoo
    Ha, Jinyong
    Kim, Jung-Sun
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 10
  • [7] Optical coherence tomography-based machine learning for predicting fractional flow reserve in intermediate coronary stenosis: a feasibility study
    Cha, Jung-Joon
    Tran Dinh Son
    Ha, Jinyong
    Kim, Jung-Sun
    Hong, Sung-Jin
    Ahn, Chul-Min
    Kim, Byeong-Keuk
    Ko, Young-Guk
    Choi, Donghoon
    Hong, Myeong-Ki
    Jang, Yangsoo
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [8] Angiography-Based Machine Learning for Predicting Fractional Flow Reserve in Intermediate Coronary Artery Lesions
    Cho, Hyungjoo
    Lee, June-Goo
    Kang, Soo-Jin
    Kim, Won-Jang
    Choi, So-Yeon
    Ko, Jiyuon
    Min, Hyun-Seok
    Choi, Gun-Ho
    Kang, Do-Yoon
    Lee, Pil Hyung
    Ahn, Jung-Min
    Park, Duk-Woo
    Lee, Seung-Whan
    Kim, Young-Hak
    Lee, Cheol Whan
    Park, Seong-Wook
    Park, Seung-Jung
    [J]. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2019, 8 (04):
  • [9] Corbière C, 2019, ADV NEUR IN, V32
  • [10] Automatic segmentation of coronary arteries using Gabor filters and thresholding based on multiobjective optimization
    Cruz-Aceves, Ivan
    Oloumi, Faraz
    Rangayyan, Rangaraj M.
    Avina-Cervantes, Juan G.
    Hernandez-Aguirre, Arturo
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2016, 25 : 76 - 85