On the weakly commutative semirings

被引:0
作者
Sarkar, Puja [1 ]
Bhuniya, A. K. [1 ]
机构
[1] Visva Bharati, Dept Math, Santini Ketan 731235, India
关键词
Semiring; additively idempotent; weakly commutative; Putcha; k-Archimedean; IDEMPOTENT;
D O I
10.1142/S1793557124500803
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of weakly commutativity in the class of all additively idempotent semirings. An additively idempotent semiring is weakly commutative if and only if it is a distributive lattice of weakly commutative k-Archimedean semirings.
引用
收藏
页数:11
相关论文
共 23 条
[1]   Distributive lattice decompositions of semirings with a semilattice additive reduct [J].
Bhuniya, A. K. ;
Mondal, T. K. .
SEMIGROUP FORUM, 2010, 80 (02) :293-301
[2]  
BOGDANOVIC S, 1994, INDIAN J PURE AP MAT, V25, P331
[3]  
Bogdanovic S., 1993, Filomat, V7, P1
[5]   Semilattice decompositions of semigroups [J].
Ciric, M ;
Bogdanovic, S .
SEMIGROUP FORUM, 1996, 52 (02) :119-132
[6]  
Clifford AH, 1944, ANN MATH, V42, P1037
[7]   Schemes over F1 and zeta functions [J].
Connes, Alain ;
Consani, Caterina .
COMPOSITIO MATHEMATICA, 2010, 146 (06) :1383-1415
[8]  
Conway J.H., 1971, REGULAR ALGEBRA FINI
[9]  
Durcheva M., 2015, ACM Commun. Comput. Algebra, V49, P9, DOI [10.1145/2768577.2768600, DOI 10.1145/2768577.2768600]
[10]  
Howie JM, 1995, FUNDAMENTALS SEMIGRO