XGExplainer: Robust Evaluation-based Explanation for Graph Neural Networks

被引:0
|
作者
Kubo, Ryoji [1 ]
Difallah, Djellel [1 ]
机构
[1] New York Univ Abu Dhabi, Abu Dhabi, U Arab Emirates
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph Neural Networks (GNNs) have emerged as a powerful tool for machine learning on graph datasets. Although GNNs can achieve high accuracy on several tasks, the explainability of the predictions remains a challenge. Existing works in GNN explainability aim to extract the key features contributing to the prediction made by a pre-trained model. For instance, perturbation-based methods focus on evaluating the potential explanatory subgraphs using the pre-trained model itself as an evaluator to determine whether the subgraphs capture the informative features. However, we show that this approach can fail to recognize informative subgraphs that become out-of-distribution relative to the training data. To address this limitation, we propose XGExplainer, a method designed to enhance the robustness of perturbation-based explainers. It achieves this by training a specialized GNN model, i.e., a robust evaluator model that aims at estimating the true graph distribution from randomized subgraphs of the input graph. Our method is geared towards enhancing the generalizability of existing explainability techniques by decoupling the pre-trained model from the evaluator, whose primary role is to gauge the informativeness of potential explanatory subgraphs. Our experiments show that XGExplainer consistently improves the performance of local and global explainer techniques and outperforms state-of-the-art methods on all datasets for node and graph classification tasks.
引用
收藏
页码:64 / 72
页数:9
相关论文
共 50 条
  • [41] Robust Regularization Design of Graph Neural Networks Against Adversarial Attacks Based on Lyapunov Theory
    Wenjie YAN
    Ziqi LI
    Yongjun QI
    Chinese Journal of Electronics, 2024, 33 (03) : 732 - 741
  • [42] Robust Regularization Design of Graph Neural Networks Against Adversarial Attacks Based on Lyapunov Theory
    Yan, Wenjie
    Li, Ziqi
    Qi, Yongjun
    CHINESE JOURNAL OF ELECTRONICS, 2024, 33 (03) : 732 - 741
  • [43] A Robust Cyber Attack Detection Method Through Attention-Based Graph Neural Networks
    Xu, Xiangyang
    Song, Yu
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2025,
  • [44] Concept-based explanation of neural networks for dermatohistopathology
    Sauter, D.
    Lodde, G.
    Nensa, F.
    Schadendorf, D.
    Livingstone, E.
    Kukuk, M.
    JOURNAL DER DEUTSCHEN DERMATOLOGISCHEN GESELLSCHAFT, 2022, 20 : 68 - 68
  • [45] Graph-based Recommendation using Graph Neural Networks
    Dossena, Marco
    Irwin, Christopher
    Portinale, Luigi
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1769 - 1774
  • [46] Graph-based Dependency Parsing with Graph Neural Networks
    Ji, Tao
    Wu, Yuanbin
    Lan, Man
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 2475 - 2485
  • [47] Multi-Attribute evaluation-based graph model for conflict resolution considering heterogeneous behaviors
    Liu, Peide
    Fu, Yingxin
    Wang, Peng
    Wu, Xiaoming
    INFORMATION SCIENCES, 2025, 686
  • [48] Graph neural networks in node classification: survey and evaluation
    Xiao, Shunxin
    Wang, Shiping
    Dai, Yuanfei
    Guo, Wenzhong
    MACHINE VISION AND APPLICATIONS, 2022, 33 (01)
  • [49] Protein Docking Model Evaluation by Graph Neural Networks
    Wang, Xiao
    Flannery, Sean T.
    Kihara, Daisuke
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 8
  • [50] Graph neural networks in node classification: survey and evaluation
    Shunxin Xiao
    Shiping Wang
    Yuanfei Dai
    Wenzhong Guo
    Machine Vision and Applications, 2022, 33