The Effect of Homogenization and Hot Deformation on the Recrystallization Behavior in Aluminum Alloy AA8079

被引:1
作者
Santora, Erik [1 ]
Pachnek, Florian [1 ]
Falkinger, Georg [1 ]
Pogatscher, Stefan [2 ]
Hirsch, Juergen [3 ]
机构
[1] AMAG Rolling GmbH, A-5282 Ranshofen, Austria
[2] Montan Univ Leoben, Chair Nonferrous Met, Christian Doppler Lab Adv Aluminum Alloys, A-8700 Leoben, Austria
[3] Aluminium Consulting, D-53639 Konigswinter, Germany
来源
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE | 2024年 / 55卷 / 12期
关键词
COMMERCIAL PURITY ALUMINUM; STATIC RECRYSTALLIZATION; SILICON CONTENT; AL; KINETICS; MICROSTRUCTURE; WORKING; COLD; FCC;
D O I
10.1007/s11661-024-07596-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For Al-Fe-Si foil stock alloys, the recrystallization behavior is one of the key features for the design of the thermo-mechanical process route, which is highly dependent on the content of the elements in solute solution, especially Fe. Consequently, the combined effects of homogenization and hot deformation on the recrystallization behavior are of great interest. The focus of this work is on the resulting recrystallization behavior during hot deformation caused by different homogenization annealings prior to hot deformation. AA8079 samples were homogenized at two different temperatures and then used for uniaxial hot-compression tests at temperatures between 320 degrees C and 440 degrees C. The resulting hot deformation and recrystallization behavior were investigated by means of flow curves, optical microscopy, and microhardness measurements. A finite element method (FEM)-based simulation model was used to compute local temperatures and strain rates. The experimental investigation revealed a significant influence of the homogenization treatment on the hot deformation flow stress and subsequent recrystallization behavior.
引用
收藏
页码:4914 / 4927
页数:14
相关论文
共 69 条
[1]  
Altenpohl D., 1965, ALUMINIUM ALUMINIUML, DOI [10.1007/978-3-662-30245-3, DOI 10.1007/978-3-662-30245-3]
[2]  
Altenpohl D., 1957, ALUMINIUM, V33, P306
[3]  
Alvi M. H., 2003, Metallurgical Modeling for Aluminum Alloys. Proceedings from Materials Solutions Conference 2003. 1st International Symposium on Metallurgical Modeling for Aluminium Alloys, P191
[4]  
[Anonymous], 2023, AMAG ALUREPORT, V1, P24
[5]   Constitutive equations for elevated temperature flow behavior of commercial purity aluminum [J].
Ashtiani, H. R. Rezaei ;
Parsa, M. H. ;
Bisadi, H. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 545 :61-67
[6]   FactSage thermochemical software and databases [J].
Bale, C ;
Chartrand, P ;
Degterov, SA ;
Eriksson, G ;
Hack, K ;
Ben Mahfoud, R ;
Melançon, J ;
Pelton, AD ;
Petersen, S .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2002, 26 (02) :189-228
[7]  
Boutin F. R., 1975, J PHYSIQUE C S, V36, P355
[8]  
Brzobahaty M., 1962, SHEET METAL IND, V5, P341
[9]   Modeling recrystallization kinetics in AA1050 following simulated breakdown rolling [J].
Chen, S. P. ;
Van der Zwaag, S. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2006, 37A (09) :2859-2869
[10]   Quantification of the recrystallization behaviour in Al-alloy AA1050 [J].
Chen, SP ;
Hanlon, DN ;
Van der Zwaag, S ;
Pei, YT ;
Dehosson, JTM .
JOURNAL OF MATERIALS SCIENCE, 2002, 37 (05) :989-995