Multiple solutions for mixed local and nonlocal elliptic equations

被引:4
作者
Su, Xifeng [1 ]
Valdinoci, Enrico [2 ]
Wei, Yuanhong [3 ]
Zhang, Jiwen [4 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, 19,XinJieKouWai St, Beijing 100875, Peoples R China
[2] Univ Western Australia, Dept Math & Stat, 35 Stirling Highway, Crawley, WA 6009, Australia
[3] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
[4] Beijing Normal Univ, Sch Math Sci, 19,XinJieKouWai St, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Mixed local and nonlocal operators; Multiple solutions; Sign-changing solution; Descending flow; Nehari manifold;
D O I
10.1007/s00209-024-03599-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we establish some multiplicity results for a mixed local and nonlocal semi-linear elliptic equation driven by the superposition of Brownian and L & eacute;vy processes, taking the form -Delta u+(-Delta)su=lambda|u|p-2u+g(x,u)in Omega,u=0inRn\Omega.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} - \Delta u + (-\Delta )<^>s u=\lambda |u|<^>{p-2}u+ g(x,u) & \quad \hbox {in } \Omega , \\ u=0 & \quad \hbox {in } {\mathbb {R}}<^>n\backslash \Omega . \\ \end{array} \right. \end{aligned}$$\end{document}Under quite general assumptions, the existence of at least five weak solutions is proved for any bounded domain Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. Furthermore, in view of suitable regularity results, classical solutions with more features are investigated. More precisely, on the one side, based on the method of the descending flow, we obtain at least six classical solutions: two positive solutions, two negative solutions and two sign-changing solutions, and five of which possess determined energy signs. On the other side, the existence of at least six classical solutions with definite energy signs is established by the Nehari manifolds. In this case, we show that four solutions have constant signs, and one solution is sign-changing.
引用
收藏
页数:37
相关论文
共 21 条
[1]  
Adams Robert A., 2003, Sobolev Spaces, Vsecond, P140
[2]   Multiplicity results for some nonlinear elliptic equations [J].
Ambrosetti, A ;
Azorero, JG ;
Peral, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 137 (01) :219-242
[3]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[4]   Lipschitz regularity of solutions for mixed integro-differential equations [J].
Barles, Guy ;
Chasseigne, Emmanuel ;
Ciomaga, Adina ;
Imbert, Cyril .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6012-6060
[5]   Mixed local and nonlocal elliptic operators: regularity and maximum principles [J].
Biagi, Stefano ;
Dipierro, Serena ;
Valdinoci, Enrico ;
Vecchi, Eugenio .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (03) :585-629
[6]   Semilinear elliptic equations involving mixed local and nonlocal operators [J].
Biagi, Stefano ;
Vecchi, Eugenio ;
Dipierro, Serena ;
Valdinoci, Enrico .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (05) :1611-1641
[7]   Local and nonlocal anisotropic transport in reversed shear magnetic fields: Shearless Cantori and nondiffusive transport [J].
Blazevski, Daniel ;
del-Castillo-Negrete, Diego .
PHYSICAL REVIEW E, 2013, 87 (06)
[8]  
Brezis H., 1999, ANAL FONCTIONNELLE T
[9]   BOUNDARY HARNACK PRINCIPLE FOR Δ + Δα/2 [J].
Chen, Zhen-Qing ;
Kim, Panki ;
Song, Renming ;
Vondracek, Zoran .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (08) :4169-4205
[10]   A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations [J].
de la Llave, Rafael ;
Valdinoci, Enrico .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (04) :1309-1344