The small deborah number limit for the fluid-particle flows: Incompressible case

被引:0
|
作者
Fang, Zhendong [1 ]
Qi, Kunlun [2 ]
Wen, Huanyao [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
[2] Univ Minnesota Twin Cities, Sch Math, Minneapolis, MN 55455 USA
来源
基金
中国国家自然科学基金;
关键词
Hydrodynamic limit; Navier-Stokes equation; Kramer-Smoluchowski equation; Vlasov-Fokker-Plank equation; Hilbert expansion; energy estimate; macro-micro decomposition; NAVIER-STOKES EQUATIONS; GLOBAL WEAK SOLUTIONS; HIGH-FIELD LIMIT; HYDRODYNAMIC LIMIT; ASYMPTOTIC ANALYSIS; CLASSICAL-SOLUTIONS; CAUCHY-PROBLEM; VLASOV; BOLTZMANN; SYSTEM;
D O I
10.1142/S0218202524500489
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to the study of the hydrodynamic limit for the fluid-particle flows governed by the Vlasov-Fokker-Planck (VFP) equation coupled with the incompressible Navier-Stokes (INS) equation as the Deborah number approaches to zero. The limit is valid globally in time provided that the initial perturbation is small in a neighborhood of a steady state. The proof is based on a formal derivation of the limiting system via the Hilbert approach, followed by a rigorous justification via introducing a novel decomposition involving some macroscopic quantities and a refined energy estimate motivated by macro-micro decomposition. In contrast to the existing results for the same scaled model, the present work provides the first one on the hydrodynamic limits in a strong sense with an explicit convergence rate.
引用
收藏
页码:2265 / 2304
页数:40
相关论文
共 50 条
  • [31] A level set approach for dilute non-collisional fluid-particle flows
    Liu, Hailiang
    Wang, Zhongming
    Fox, Rodney O.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (04) : 920 - 936
  • [33] A Higher-Order Approach to Fluid-Particle Coupling in Microscale Polymer Flows
    Kallemov, B.
    Miller, G. H.
    Trebotich, D.
    NSTI NANOTECH 2008, VOL 3, TECHNICAL PROCEEDINGS: MICROSYSTEMS, PHOTONICS, SENSORS, FLUIDICS, MODELING, AND SIMULATION, 2008, : 425 - +
  • [34] Numerical simulation of compressible fluid-particle flows in multimaterial Lagrangian hydrodynamics framework
    Zhou, Rui
    Meng, Baoqing
    Zeng, Junsheng
    Chen, Qian
    Tian, Baolin
    COMPUTERS & FLUIDS, 2021, 223 (223)
  • [35] Small oscillations of a viscous incompressible fluid with a large number of small interacting particles in the case of their surface distribution
    M. A. Berezhnoi
    Ukrainian Mathematical Journal, 2009, 61 : 361 - 382
  • [36] Small oscillations of a viscous incompressible fluid with a large number of small interacting particles in the case of their surface distribution
    Berezhnoi, M. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2009, 61 (03) : 361 - 382
  • [37] Dissipative particle dynamics modeling of low Reynolds number incompressible flows
    Mai-Duy, N.
    Pan, D.
    Phan-Thien, N.
    Khoo, B. C.
    JOURNAL OF RHEOLOGY, 2013, 57 (02) : 585 - 604
  • [38] On the small rigid body limit in 3D incompressible flows
    He, Jiao
    Iftimie, Dragos
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 104 (02): : 668 - 687
  • [39] A Lagrangian probability-density-function model for collisional turbulent fluid-particle flows
    Innocenti, A.
    Fox, R. O.
    Salvetti, M., V
    Chibbaro, S.
    JOURNAL OF FLUID MECHANICS, 2019, 862 : 449 - 489
  • [40] A Semi-Lagrangian Approach for Dilute Non-Collisional Fluid-Particle Flows
    Bernard-Champmartin, Aude
    Braeunig, Jean-Philippe
    Fochesato, Christophe
    Goudon, Thierry
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 19 (03) : 801 - 840