The small deborah number limit for the fluid-particle flows: Incompressible case

被引:0
|
作者
Fang, Zhendong [1 ]
Qi, Kunlun [2 ]
Wen, Huanyao [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
[2] Univ Minnesota Twin Cities, Sch Math, Minneapolis, MN 55455 USA
来源
基金
中国国家自然科学基金;
关键词
Hydrodynamic limit; Navier-Stokes equation; Kramer-Smoluchowski equation; Vlasov-Fokker-Plank equation; Hilbert expansion; energy estimate; macro-micro decomposition; NAVIER-STOKES EQUATIONS; GLOBAL WEAK SOLUTIONS; HIGH-FIELD LIMIT; HYDRODYNAMIC LIMIT; ASYMPTOTIC ANALYSIS; CLASSICAL-SOLUTIONS; CAUCHY-PROBLEM; VLASOV; BOLTZMANN; SYSTEM;
D O I
10.1142/S0218202524500489
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to the study of the hydrodynamic limit for the fluid-particle flows governed by the Vlasov-Fokker-Planck (VFP) equation coupled with the incompressible Navier-Stokes (INS) equation as the Deborah number approaches to zero. The limit is valid globally in time provided that the initial perturbation is small in a neighborhood of a steady state. The proof is based on a formal derivation of the limiting system via the Hilbert approach, followed by a rigorous justification via introducing a novel decomposition involving some macroscopic quantities and a refined energy estimate motivated by macro-micro decomposition. In contrast to the existing results for the same scaled model, the present work provides the first one on the hydrodynamic limits in a strong sense with an explicit convergence rate.
引用
收藏
页码:2265 / 2304
页数:40
相关论文
共 50 条
  • [21] NUMERICAL-SIMULATION OF FLUID-PARTICLE FLOWS - GEOTHERMAL DRILLING APPLICATIONS
    GIVLER, RC
    MIKATARIAN, RR
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 1987, 109 (03): : 324 - 331
  • [22] Computer simulation of concentrated fluid-particle suspension flows in axisymmetric geometries
    Hofer, M
    Perktold, K
    BIORHEOLOGY, 1997, 34 (4-5) : 261 - 279
  • [23] Sparse identification of multiphase turbulence closures for coupled fluid-particle flows
    Beetham, S.
    Fox, R.O.
    Capecelatro, J.
    Journal of Fluid Mechanics, 2021, 914
  • [24] Laminar-to-turbulent fluid-particle flows in a human airway model
    Kleinstreuer, C
    Zhang, Z
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2003, 29 (02) : 271 - 289
  • [25] Sparse identification of multiphase turbulence closures for coupled fluid-particle flows
    Beetham, S.
    Fox, R. O.
    Capecelatro, J.
    JOURNAL OF FLUID MECHANICS, 2021, 914
  • [26] Global Weak Solutions to a Fluid-particle System of an Incompressible Non-Newtonian Fluid and the Vlasov Equation
    Peiyu ZHANG
    Li FANG
    Zhenhua GUO
    Acta Mathematicae Applicatae Sinica, 2024, 40 (04) : 954 - 978
  • [27] Global Weak Solutions to a Fluid-particle System of an Incompressible Non-Newtonian Fluid and the Vlasov Equation
    Zhang, Pei-yu
    Fang, Li
    Guo, Zhen-hua
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (04): : 954 - 978
  • [28] Numerical simulation of Bingham fluid-particle two-phase turbulent flows
    Zeng, ZX
    Xie, YB
    Jiang, ST
    MULTIPHASE, NON-NEWTONIAN AND REACTING FLOWS, VOL 2, PROCEEDINGS, 2004, : 427 - 429
  • [29] The small Deborah number limit of the Doi-Onsager equation without hydrodynamics
    Liu, Yuning
    Wang, Wei
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (10) : 2740 - 2793
  • [30] Interpretable machine learning analysis and automated modeling to simulate fluid-particle flows
    Ouyang, Bo
    Zhu, Litao
    Luo, Zhenghong
    PARTICUOLOGY, 2023, 80 : 42 - 52