Artificial intelligence in chronic kidney diseases: methodology and potential applications

被引:1
作者
Simeri, Andrea [1 ]
Pezzi, Giuseppe [2 ]
Arena, Roberta [3 ]
Papalia, Giuliana [3 ]
Szili-Torok, Tamas [5 ]
Greco, Rosita [3 ]
Veltri, Pierangelo [4 ]
Greco, Gianluigi [1 ]
Pezzi, Vincenzo [3 ]
Provenzano, Michele [3 ]
Zaza, Gianluigi [3 ]
机构
[1] Univ Calabria, Dept Math & Comp Sci, I-87036 Arcavacata Di Rende, CS, Italy
[2] Univ Catanzaro, Dept Med & Surg Sci, I-88100 Catanzaro, Italy
[3] Univ Calabria, Rende Hosp SS Annunziata, Dept Pharm Hlth & Nutr Sci, Nephrol Dialysis & Renal Transplant Unit, Cosenza, Italy
[4] Univ Calabria, Dept Comp Sci Modeling Elect & Syst Engn, I-87036 Arcavacata Di Rende, CS, Italy
[5] Univ Med Ctr Groningen, Dept Internal Med, Div Nephrol, Groningen, Netherlands
关键词
Chronic kidney disease; Artificial intelligence; Machine learning; Deep learning; Explainable artificial intelligence; GLOMERULAR-FILTRATION-RATE; COLLABORATIVE METAANALYSIS; HIGHER ALBUMINURIA; ANEMIA; HYPERTENSION; PREDICTION; MORTALITY; OUTCOMES; MODEL;
D O I
10.1007/s11255-024-04165-8
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Chronic kidney disease (CKD) represents a significant global health challenge, characterized by kidney damage and decreased function. Its prevalence has steadily increased, necessitating a comprehensive understanding of its epidemiology, risk factors, and management strategies. While traditional prognostic markers such as estimated glomerular filtration rate (eGFR) and albuminuria provide valuable insights, they may not fully capture the complexity of CKD progression and associated cardiovascular (CV) risks.This paper reviews the current state of renal and CV risk prediction in CKD, highlighting the limitations of traditional models and the potential for integrating artificial intelligence (AI) techniques. AI, particularly machine learning (ML) and deep learning (DL), offers a promising avenue for enhancing risk prediction by analyzing vast and diverse patient data, including genetic markers, biomarkers, and imaging. By identifying intricate patterns and relationships within datasets, AI algorithms can generate more comprehensive risk profiles, enabling personalized and nuanced risk assessments.Despite its potential, the integration of AI into clinical practice faces challenges such as the opacity of some algorithms and concerns regarding data quality, privacy, and bias. Efforts towards explainable AI (XAI) and rigorous data governance are essential to ensure transparency, interpretability, and trustworthiness in AI-driven predictions.
引用
收藏
页码:159 / 168
页数:10
相关论文
共 50 条
[1]   Methods to Analyze Time-to-Event Data: The Cox Regression Analysis [J].
Abd ElHafeez, Samar ;
D'Arrigo, Graziella ;
Leonardis, Daniela ;
Fusaro, Maria ;
Tripepi, Giovanni ;
Roumeliotis, Stefanos .
OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2021, 2021
[2]   Hyperkalemia Risk with Finerenone: Results from the FIDELIO-DKD Trial [J].
Agarwal, Rajiv ;
Joseph, Amer ;
Anker, Stefan D. ;
Filippatos, Gerasimos ;
Rossing, Peter ;
Ruilope, Luis M. ;
Pitt, Bertram ;
Kolkhof, Peter ;
Scott, Charlie ;
Lawatscheck, Robert ;
Wilson, Daniel J. ;
Bakris, George L. .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2022, 33 (01) :225-237
[3]   Prediction of diabetic kidney disease with machine learning algorithms, upon the initial diagnosis of type 2 diabetes mellitus [J].
Allen, Angier ;
Iqbal, Zohora ;
Green-Saxena, Abigail ;
Hurtado, Myrna ;
Hoffman, Jana ;
Mao, Qingqing ;
Das, Ritankar .
BMJ OPEN DIABETES RESEARCH & CARE, 2022, 10 (01)
[4]   Aortic Aneurysms, Chronic Kidney Disease and Metalloproteinases [J].
Andreucci, Michele ;
Provenzano, Michele ;
Faga, Teresa ;
Michael, Ashour ;
Patella, Gemma ;
Mastroroberto, Pasquale ;
Serraino, Giuseppe Filiberto ;
Bracale, Umberto Marcello ;
Ielapi, Nicola ;
Serra, Raffaele .
BIOMOLECULES, 2021, 11 (02) :1-13
[5]  
[Anonymous], 2006, The discipline of machine learning
[6]   Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts [J].
Astor, Brad C. ;
Matsushita, Kunihiro ;
Gansevoort, Ron T. ;
van der Velde, Marije ;
Woodward, Mark ;
Levey, Andrew S. ;
de Jong, Paul E. ;
Coresh, Josef .
KIDNEY INTERNATIONAL, 2011, 79 (12) :1331-1340
[7]   Practical recommendations for reporting Fine-Gray model analyses for competing risk data [J].
Austin, Peter C. ;
Fine, Jason P. .
STATISTICS IN MEDICINE, 2017, 36 (27) :4391-4400
[8]   Detection of signs of disease in external photographs of the eyes via deep learning [J].
Babenko, Boris ;
Mitani, Akinori ;
Traynis, Ilana ;
Kitade, Naho ;
Singh, Preeti ;
Maa, April Y. ;
Cuadros, Jorge ;
Corrado, Greg S. ;
Peng, Lily ;
Webster, Dale R. ;
Varadarajan, Avinash ;
Hammel, Naama ;
Liu, Yun .
NATURE BIOMEDICAL ENGINEERING, 2022, 6 (12) :1370-+
[9]   Mechanisms of Anemia in CKD [J].
Babitt, Jodie L. ;
Lin, Herbert Y. .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2012, 23 (10) :1631-1634
[10]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115