The order Mehler-Fock transform and allied pseudo-differential operator

被引:0
|
作者
Prasad, Akhilesh [1 ]
Mandal, U. K. [2 ]
Ranjan, Sudhanshu [1 ]
机构
[1] Indian Sch Mines Dhanbad, Indian Inst Technol, Dept Math & Comp, Dhanbad, India
[2] Patliputra Univ, Nalanda Coll, Dept Math, Patna, India
关键词
Mehler-Fock transform; pseudo-differential operator; convolution; KONTOROVICH-LEBEDEV; CONVOLUTION THEOREM;
D O I
10.1080/10652469.2024.2404049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a study related to the $ \mu <^>{th} $ mu th order Mehler-Fock transform (mu MFT) is carried out. Boundedness of translation and convolution operators in Lebesgue space are obtained. Continuity of mu MFT in Lebesgue as well as some test function spaces are discussed. Further, a pseudo-differential operator (p.d.o.) associated to mu MFT is defined and studied its continuity over certain function spaces.
引用
收藏
页码:163 / 175
页数:13
相关论文
共 50 条
  • [1] The convolution for zero-order Mehler-Fock transform and pseudo-differential operator
    Prasad, Akhilesh
    Verma, S. K.
    Mandal, U. K.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2018, 29 (03) : 189 - 206
  • [2] Product of Pseudo-Differential Operators Associated with Zero Order Mehler-Fock Transform
    Verma S.K.
    Prasad A.
    International Journal of Applied and Computational Mathematics, 2022, 8 (5)
  • [3] Composition and commutator of pseudo-differential operators in the framework of zero-order Mehler-Fock transform domain
    Verma, Sandeep Kumar
    Prasad, Akhilesh
    JOURNAL OF ANALYSIS, 2023, 31 (03) : 1753 - 1769
  • [4] The Mehler-Fock-Clifford Transform and Pseudo-Differential Operator on Function Spaces
    Prasad, Akhilesh
    Verma, S. K.
    FILOMAT, 2019, 33 (08) : 2457 - 2469
  • [5] An Operational Calculus of μth Order Mehler-Fock Transform
    Prasad, Akhilesh
    Ranjan, Sudhanshu
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2025, 19 (02)
  • [6] Characterization of Weyl operator in terms of Mehler-Fock transform
    Verma, Sandeep Kumar
    Prasad, Akhilesh
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (15) : 9119 - 9128
  • [7] ZERO-ORDER MEHLER-FOCK TRANSFORM AND SOBOLEV-TYPE SPACE
    Prasad, Akhilesh
    Mandal, U. K.
    Verma, S. K.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (02): : 761 - 775
  • [8] The continuous Mehler-Fock wavelet packets transform
    Dades, Abdelaali
    Daher, Radouan
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2025, 36 (01) : 1 - 15
  • [9] Composition and commutator of pseudo-differential operators in the framework of zero-order Mehler–Fock transform domain
    Sandeep Kumar Verma
    Akhilesh Prasad
    The Journal of Analysis, 2023, 31 : 1753 - 1769
  • [10] On the Exchange Property for the Mehler-Fock Transform
    Singh, Abhishek
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2016, 11 (02): : 828 - 839