6DoF assembly pose estimation dataset for robotic manipulation

被引:0
|
作者
Samarawickrama, Kulunu [1 ]
Pieters, Roel [1 ]
机构
[1] Tampere Univ, Automat Technol & Mech Engn, Tampere 33720, Finland
来源
DATA IN BRIEF | 2024年 / 56卷
关键词
Assembly; Pose; Manipulation; Point clouds; Registration;
D O I
10.1016/j.dib.2024.110834
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Robotic assembling is a challenging task that requires cognition and dexterity. In recent years, perception tools have achieved tremendous success in endowing the cognitive capabilities to robots. Although these tools have succeeded in tasks such as detection, scene segmentation, pose estimation and grasp manipulation, the associated datasets and the dataset contents lack crucial information that requires adapting them for assembling pose estimation. Furthermore, existing datasets of object 3D meshes and point clouds are presented in non-canonical view frames and therefore lack information to train perception models that infer on a visual scene. The dataset presents 2 simulated object assembly scenes with RGB-D images, 3D mesh files and ground truth assembly poses as an extension for the State-of-the-Art BOP format. This enables smooth expansion of existing perception models in computer vision as well as development of novel algorithms for estimating assembly pose in robotic assembly manipulation tasks.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Real-time scalable 6DOF pose estimation for textureless objects
    Cao, Zhe
    Sheikh, Yaser
    Banerjee, Natasha Kholgade
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 2441 - 2448
  • [22] ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose Estimation
    Su, Yongzhi
    Saleh, Mahdi
    Fetzer, Torben
    Rambach, Jason
    Navab, Nassir
    Busam, Benjamin
    Stricker, Didier
    Tombari, Federico
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6728 - 6738
  • [23] Summarizing image/surface registration for 6DOF robot/camera pose estimation
    Batlle, Elisabet
    Matabosch, Carles
    Salvi, Joaquim
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 2, PROCEEDINGS, 2007, 4478 : 105 - +
  • [24] ParametricNet: 6DoF Pose Estimation Network for Parametric Shapes in Stacked Scenarios
    Zeng, Long
    Lv, Wei Jie
    Zhang, Xin Yu
    Liu, Yong Jin
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 772 - 778
  • [25] PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation
    Peng, Sida
    Liu, Yuan
    Huang, Qixing
    Zhou, Xiaowei
    Bao, Hujun
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4556 - 4565
  • [26] Keypoint Cascade Voting for Point Cloud Based 6DoF Pose Estimation
    Wu, Yangzheng
    Javaheri, Alireza
    Zand, Mohsen
    Greenspan, Michael
    2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV, 2022, : 176 - 186
  • [27] Optimizing RGB-D Fusion for Accurate 6DoF Pose Estimation
    Saadi, Lounes
    Besbes, Bassem
    Kramm, Sebastien
    Bensrhair, Abdelaziz
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02): : 2413 - 2420
  • [28] A Survey of 6DoF Object Pose Estimation Methods for Different Application Scenarios
    Guan, Jian
    Hao, Yingming
    Wu, Qingxiao
    Li, Sicong
    Fang, Yingjian
    SENSORS, 2024, 24 (04)
  • [29] A Study on the Impact of Domain Randomization for Monocular Deep 6DoF Pose Estimation
    da Cunha, Kelvin B.
    Brito, Caio
    Valenca, Luas
    Simoes, Francisco
    Teichrieb, Veronica
    2020 33RD SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2020), 2020, : 332 - 339
  • [30] NEMA: 6-DoF Pose Estimation Dataset for Deep Learning
    Roman, Philippe Perez de San
    Desbarats, Pascal
    Domenger, Jean-Philippe
    Buendia, Axel
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 682 - 690