Comparative Assessment of P&O, PSO Sliding Mode, and PSO-ANFIS Controller MPPT for Microgrid Dynamics

被引:3
作者
Dennai, Mohammed Yassine [1 ]
Tedjini, Hamza [1 ]
Nasri, Abdelfatah [1 ]
机构
[1] Tahri Mohamed Univ Bechar, Fac Technol, Dept Elect Engn, Lab Smart Grids & Renewable Energies SGRE, BP 417, Bechar 08000, Algeria
关键词
Energy storage; Maximum power point trackers; Microgrids; Solar energy; ENERGY MANAGEMENT; SYSTEM;
D O I
10.5755/j02.eie.36335
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper compares different maximum power point tracking (MPPT) control strategies in microgrid dynamics, focussing on perturb and observe (P&O), adaptive neuro-fuzzy inference system (ANFIS), particle swarm optimisation (PSO), and PSO sliding mode controller techniques. The study investigates their performance under varying microgrid conditions, considering factors like weather and load variations. The simulation results provide a detailed comparative analysis of the power at the point of common coupling (PCC) for MPPT techniques at different time intervals. Both the P&O and PSO sliding mode recorded a power output of 287 kW, while PSO-ANFIS achieved a slightly higher power output of 294 kW. At 2.5 seconds, the P&O method recorded a power output of 712 kW, while the PSO sliding mode and the PSO-ANFIS techniques achieved 717 kW and 738 kW, respectively. Overall, the PSO-ANFIS technique consistently outperformed the other methods in terms of power output, demonstrating its effectiveness in maximising energy extraction and adaptability to dynamic conditions. These findings provide valuable insights for designing and implementing MPPT controllers in microgrid systems, emphasising the efficiency of the hybrid PSO-ANFIS technique in enhancing the overall performance and stability of renewable energy systems.
引用
收藏
页码:54 / 61
页数:8
相关论文
共 20 条
[1]   High-Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrids [J].
Abdelsalam, Ahmed K. ;
Massoud, Ahmed M. ;
Ahmed, Shehab ;
Enjeti, Prasad N. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2011, 26 (04) :1010-1021
[2]  
Akbari M., 2011, 2011 IEEE PES Innovative Smart Grid Technologies - India (ISGT India), P352, DOI 10.1109/ISET-India.2011.6145340
[3]   Optimal Coordinated Control of DC Microgrid Based on Hybrid PSO-GWO Algorithm [J].
Al-Tameemi, Zaid Hamid Abdulabbas ;
Lie, Tek Tjing ;
Foo, Gilbert ;
Blaabjerg, Frede .
ELECTRICITY, 2022, 3 (03) :346-364
[4]   Variable step size perturb and observe MPPT controller by applying θ-modified krill herd algorithm-sliding mode controller under partially shaded conditions [J].
Ali, Ziad M. ;
Quynh Nguyen Vu ;
Dadfar, Sajjad ;
Nakamura, Hiroki .
JOURNAL OF CLEANER PRODUCTION, 2020, 271
[5]   Sliding mode control of photovoltaic based power generation systems for microgrid applications [J].
Alsmadi, Yazan M. ;
Alqahtani, Ayedh ;
Giral, Roberto ;
Vidal-Idiarte, Enric ;
Martinez-Salamero, Luis ;
Utkin, Vadim ;
Xu, Longya ;
Abdelaziz, Almoataz Y. .
INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (06) :1704-1715
[6]  
Alvarez G, 2017, IEEE PHOT SPEC CONF, P2941, DOI 10.1109/PVSC.2017.8366738
[7]  
Andrew-Cotter J, 2019, 2019 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE (IEMDC), P2089, DOI 10.1109/IEMDC.2019.8785403
[8]  
Baghaee H.R., 2017, IEEE Transactions on Industrial Informatics, DOI DOI 10.1109/TII.2017.2677943
[9]   Improvement of the Dynamic Response of Robust Sliding Mode MPPT Controller-Based PSO Algorithm for PV Systems under Fast-Changing Atmospheric Conditions [J].
Djanssou, Dieudonne Marcel ;
Dadje, Abdouramani ;
Tom, Ahmat ;
Djongyang, Noel .
INTERNATIONAL JOURNAL OF PHOTOENERGY, 2021, 2021 (2021)
[10]   Power Management Strategy Based on Adaptive Neuro Fuzzy Inference System for AC Microgrid [J].
Fekry, Hesham M. ;
Eldesouky, Azza Ahmed ;
Kassem, Ahmed M. ;
Abdelaziz, Almoataz Y. .
IEEE ACCESS, 2020, 8 :192087-192100