Adaptive horizon size moving horizon estimation with unknown noise statistical properties

被引:0
作者
Wang, Zhongxin [1 ,2 ]
Liu, Zhilin [1 ,2 ]
Yuan, Shouzheng [1 ,2 ]
Li, Guosheng [3 ]
机构
[1] Harbin Engn Univ, Coll Intelligent Syst Sci & Engn, Harbin 150001, Peoples R China
[2] Minist Educ, Key Lab Intelligent Technol & Applicat Marine Equi, Harbin 150001, Peoples R China
[3] CNGC East China Inst Photoelect, Suzhou 215011, Peoples R China
关键词
moving horizon estimation; state estimation; horizon size; adaptive estimation; unknown noise statistics; STATE ESTIMATION; SYSTEMS;
D O I
10.1088/1361-6501/ad6c72
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Moving horizon estimation (MHE) is an effective technique for state estimation. It formulates state estimation as an optimization problem over a finite time interval and is characterized by inherent robustness, flexibility, and explicit constraint handling capabilities. The horizon size is a crucial parameter influencing the estimation performance of MHE. However, the selection of the horizon size remains an open research question in the field of MHE. In this paper, we propose a novel adaptive horizon size MHE strategy that dynamically adjusts the horizon size based on the value of the objective function. This approach aims to improve the state estimation performance of MHE in real-time applications. Unlike conventional MHE methods that rely on a fixed horizon size, our adaptive strategy enhances robustness against unknown noise statistics by adjusting the horizon size. We analyze the convergence property of the estimation error and provide guidelines for parameter design to ensure optimal performance. The effectiveness and superiority of the proposed method are demonstrated through simulations involving an oscillatory system and a target tracking application under non-stationary noise conditions.
引用
收藏
页数:14
相关论文
共 44 条
  • [1] Lipid production optimization and optimal control of heterotrophic microalgae fed-batch bioreactor
    Abdollahi, Javad
    Dubljevic, Stevan
    [J]. CHEMICAL ENGINEERING SCIENCE, 2012, 84 : 619 - 627
  • [2] Multiple window moving horizon estimation
    Al-Matouq, Ali A.
    Vincent, Tyrone L.
    [J]. AUTOMATICA, 2015, 53 : 264 - 274
  • [3] Receding-horizon estimation for switching discrete-time linear systems
    Alessandri, A
    Baglietto, M
    Battistelli, G
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) : 1736 - 1748
  • [4] Receding-horizon estimation for discrete-time linear systems
    Alessandri, A
    Baglietto, M
    Battistelli, G
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (03) : 473 - 478
  • [5] Moving-horizon state estimation for nonlinear discrete-time systems: New stability results and approximation schemes
    Alessandri, Angelo
    Baglietto, Marco
    Battistelli, Giorgio
    [J]. AUTOMATICA, 2008, 44 (07) : 1753 - 1765
  • [6] Moving-horizon estimation with guaranteed robustness for discrete-time linear systems and measurements subject to outliers
    Alessandri, Angelo
    Awawdeh, Moath
    [J]. AUTOMATICA, 2016, 67 : 85 - 93
  • [7] Alessandri A, 2014, IEEE DECIS CONTR P, P2591, DOI 10.1109/CDC.2014.7039785
  • [8] A Lyapunov-like Function for Full Information Estimation
    Allan, Douglas A.
    Rawlings, James B.
    [J]. 2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 4497 - 4502
  • [9] CasADi: a software framework for nonlinear optimization and optimal control
    Andersson, Joel A. E.
    Gillis, Joris
    Horn, Greg
    Rawlings, James B.
    Diehl, Moritz
    [J]. MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) : 1 - 36
  • [10] Nonlinear Moving Horizon Estimation: Adaptive Arrival Cost with Prescribed Conditioning Number
    Deniz, Nestor
    Sanchez, Guido
    Murillo, Marina
    Benavidez, Jesus
    Giovanini, Leonardo
    [J]. 2021 XIX WORKSHOP ON INFORMATION PROCESSING AND CONTROL (RPIC), 2021,