Ectopic expression of HaPEPC1 from the desert shrub Haloxylon ammodendron confers drought stress tolerance in Arabidopsis thaliana

被引:3
|
作者
Zhang, Zhilong [1 ]
Zhang, Anna [1 ]
Zhang, Yaru [1 ]
Zhao, Juan [1 ]
Wang, Yuanyuan [1 ]
Zhang, Lingling [1 ]
Zhang, Sheng [1 ]
机构
[1] Northwest A&F Univ, Coll Forestry, Yangling 712100, Shaanxi, Peoples R China
关键词
HaPEPC1; Haloxylon ammodendron; Drought stress; Photosynthesis; Ectopic expression; Transcriptome; HIGH-LEVEL EXPRESSION; PHOSPHOENOLPYRUVATE CARBOXYLASE; TRANSGENIC RICE; LIPID-PEROXIDATION; GENE-EXPRESSION; PLANTS; ENZYMES; CLONING; PATHWAY; GROWTH;
D O I
10.1016/j.plaphy.2024.108536
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Phosphoenolpyruvate carboxylase (PEPC) plays a crucial role in the initial carbon fixation process in C-4 plants. However, its nonphotosynthetic functions in Haloxylon ammodendron, a C-4 perennial xerohalophytic shrub, are still poorly understood. Previous studies have reported the involvement of PEPC in plant responses to abiotic stresses such as drought and salt stress. However, the underlying mechanism of PEPC tolerance to drought stress has not been determined. In this study, we cloned the C-4-type PEPC gene HaPEPC1 from H. ammodendron and investigated its biological function by generating transgenic Arabidopsis plants with ectopic expression of HaPEPC1. Our results showed that, compared with WT (wild-type) plants, ectopic expression of HaPEPC1 plants exhibited significantly greater germination rates and chlorophyll contents. Furthermore, under drought stress, the transgenic plants presented increased root length, fresh weight, photosynthetic capacity, and antioxidant enzyme activities, particularly ascorbate peroxidase and peroxidase. Additionally, the transgenic plants exhibited reduced levels of malondialdehyde, H2O2 (hydrogen peroxide), and O-2(-) (superoxide radical). Transcriptome analysis indicated that ectopic expression of HaPEPC1 primarily regulated the expression of genes associated with the stress defence response, glutathione metabolism, and abscisic acid (ABA) synthesis and signalling pathways in response to drought stress. Taken together, these findings suggest that the ectopic expression of HaPEPC1 enhances the reduction of H2O2 and O-2(-) in transgenic plants, thereby improving reactive oxygen species (ROS) scavenging capacity and enhancing drought tolerance. Therefore, the HaPEPC1 gene holds promise as a candidate gene for crop selection aimed at enhancing drought tolerance.
引用
收藏
页数:14
相关论文
共 50 条
  • [42] Expression of rice gene OsMSR4 confers decreased ABA sensitivity and improved drought tolerance in Arabidopsis thaliana
    Yin, Xuming
    Huang, Lifang
    Zhang, Xin
    Wang, Manling
    Xu, Guoyun
    Xia, Xinjie
    PLANT GROWTH REGULATION, 2015, 75 (02) : 549 - 556
  • [43] Expression of rice gene OsMSR4 confers decreased ABA sensitivity and improved drought tolerance in Arabidopsis thaliana
    Xuming Yin
    Lifang Huang
    Xin Zhang
    Manling Wang
    Guoyun Xu
    Xinjie Xia
    Plant Growth Regulation, 2015, 75 : 549 - 556
  • [44] Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana
    Ding, Zhenhua
    Li, Shiming
    An, Xueli
    Liu, Xin
    Qin, Huanju
    Wang, Damen
    JOURNAL OF GENETICS AND GENOMICS, 2009, 36 (01) : 17 - 29
  • [45] Expression of SbSNAC1, a NAC transcription factor from sorghum, confers drought tolerance to transgenic Arabidopsis
    Lu, Min
    Zhang, Deng-Feng
    Shi, Yun-Su
    Song, Yan-Chun
    Wang, Tian-Yu
    Li, Yu
    PLANT CELL TISSUE AND ORGAN CULTURE, 2013, 115 (03) : 443 - 455
  • [46] Expression of SbSNAC1, a NAC transcription factor from sorghum, confers drought tolerance to transgenic Arabidopsis
    Min Lu
    Deng-Feng Zhang
    Yun-Su Shi
    Yan-Chun Song
    Tian-Yu Wang
    Yu Li
    Plant Cell, Tissue and Organ Culture (PCTOC), 2013, 115 : 443 - 455
  • [47] The expression of alfalfa MsPP2CA1 gene confers ABA sensitivity and abiotic stress tolerance on Arabidopsis thaliana
    Dong, Wei
    Liu, Xijiang
    Lv, Jiao
    Gao, Tianxue
    Song, Yuguang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2019, 143 : 176 - 182
  • [48] Overexpression of Arabidopsis thaliana tryptophan synthase beta 1 (AtTSB1) in Arabidopsis and tomato confers tolerance to cadmium stress
    Sanjaya
    Hsiao, Pao-Yuan
    Su, Ruey-Chih
    Ko, Swee-Suak
    Tong, Chii-Gong
    Yang, Ray-Yu
    Chan, Ming-Tsair
    PLANT CELL AND ENVIRONMENT, 2008, 31 (08): : 1074 - 1085
  • [49] Ectopic Expression of Maize Plastidic Methionine Sulfoxide Reductase ZmMSRB1 Enhances Salinity Stress Tolerance in Arabidopsis thaliana
    Wang, Guangling
    Fu, Xiaoyi
    Zhao, Wanmei
    Zhang, Mengmeng
    Chen, Fanguo
    PLANT MOLECULAR BIOLOGY REPORTER, 2022, 40 (02) : 284 - 295
  • [50] Ectopic Expression of Maize Plastidic Methionine Sulfoxide Reductase ZmMSRB1 Enhances Salinity Stress Tolerance in Arabidopsis thaliana
    Guangling Wang
    Xiaoyi Fu
    Wanmei Zhao
    Mengmeng Zhang
    Fanguo Chen
    Plant Molecular Biology Reporter, 2022, 40 : 284 - 295