Applications of artificial intelligence in computed tomography imaging for phenotyping pulmonary hypertension

被引:3
作者
Sharkey, Michael J. [1 ,2 ]
Checkley, Elliot W. [1 ]
Swift, Andrew J. [1 ,3 ,4 ]
机构
[1] Univ Sheffield, Dept Clin Med, Sheffield, England
[2] Sheffield Teaching Hosp NHS Fdn Trust, Imaging Lab 3D, Sheffield, England
[3] Univ Sheffield, Insigneo Inst Sil Med, Sheffield, England
[4] Natl Inst Hlth & Care Res, Sheffield Biomed Res Ctr, Sheffield, England
基金
英国惠康基金;
关键词
artificial intelligence; computer tomography; pulmonary hypertension; CT;
D O I
10.1097/MCP.0000000000001103
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Purpose of reviewPulmonary hypertension is a heterogeneous condition with significant morbidity and mortality. Computer tomography (CT) plays a central role in determining the phenotype of pulmonary hypertension, informing treatment strategies. Many artificial intelligence tools have been developed in this modality for the assessment of pulmonary hypertension. This article reviews the latest CT artificial intelligence applications in pulmonary hypertension and related diseases.Recent findingsMultistructure segmentation tools have been developed in both pulmonary hypertension and nonpulmonary hypertension cohorts using state-of-the-art UNet architecture. These segmentations correspond well with those of trained radiologists, giving clinically valuable metrics in significantly less time. Artificial intelligence lung parenchymal assessment accurately identifies and quantifies lung disease patterns by integrating multiple radiomic techniques such as texture analysis and classification. This gives valuable information on disease burden and prognosis. There are many accurate artificial intelligence tools to detect acute pulmonary embolism. Detection of chronic pulmonary embolism proves more challenging with further research required.SummaryThere are numerous artificial intelligence tools being developed to identify and quantify many clinically relevant parameters in both pulmonary hypertension and related disease cohorts. These potentially provide accurate and efficient clinical information, impacting clinical decision-making.
引用
收藏
页码:464 / 472
页数:9
相关论文
共 47 条
[11]   Iodine Maps from Subtraction CT or Dual-Energy CT to Detect Pulmonary Emboli with CT Angiography: A Multiple-Observer Study [J].
Grob, Dagmar ;
Smit, Ewoud ;
Prince, Jip ;
Kist, Jakob ;
Stoger, Lauran ;
Geurts, Bram ;
Snoeren, Miranda M. ;
van Dijk, Rogier ;
Oostveen, Luuk J. ;
Prokop, Mathias ;
Schaefer-Prokop, Cornelia M. ;
Sechopoulos, Ioannis ;
Brink, Monique .
RADIOLOGY, 2019, 292 (01) :197-205
[12]   Dual energy imaging in cardiothoracic pathologies: A primer for radiologists and clinicians [J].
Gupta, Amit ;
Kikano, Elias G. ;
Bera, Kaustav ;
Baruah, Dhiraj ;
Saboo, Sachin S. ;
Lennartz, Simon ;
Hokamp, Nils Grosse ;
Gholamrezanezhad, Ali ;
Gilkeson, Robert C. ;
Laukamp, Kai R. .
EUROPEAN JOURNAL OF RADIOLOGY OPEN, 2021, 8
[13]   Novel Artificial Intelligence-based Technology for Chest Computed Tomography Analysis of Idiopathic Pulmonary Fibrosis [J].
Handa, Tomohiro ;
Tanizawa, Kiminobu ;
Oguma, Tsuyoshi ;
Uozumi, Ryuji ;
Watanabe, Kizuku ;
Tanabe, Naoya ;
Niwamoto, Takafumi ;
Shima, Hiroshi ;
Mori, Ryobu ;
Nobashi, Tomomi W. ;
Sakamoto, Ryo ;
Kubo, Takeshi ;
Kurosaki, Atsuko ;
Kishi, Kazuma ;
Nakamoto, Yuji ;
Hirai, Toyohiro .
ANNALS OF THE AMERICAN THORACIC SOCIETY, 2022, 19 (03) :399-406
[14]  
Huang G, 2016, arXiv csCV
[15]  
Humbert M, 2022, EUROPEAN HEART, DOI [DOI 10.1093/EURHEARTJ/EHAC237, DOI 10.1183/13993003.00879-2022]
[16]   Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives [J].
Humbert, Marc ;
Guignabert, Christophe ;
Bonnet, Sebastien ;
Dorfmuller, Peter ;
Klinger, James R. ;
Nicolls, Mark R. ;
Olschewski, Andrea J. ;
Pullamsetti, Soni S. ;
Schermuly, Ralph T. ;
Stenmark, Kurt R. ;
Rabinovitch, Marlene .
EUROPEAN RESPIRATORY JOURNAL, 2019, 53 (01)
[17]  
Isensee F., 2024, ARXIV
[18]   nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Kohl, Simon A. A. ;
Petersen, Jens ;
Maier-Hein, Klaus H. .
NATURE METHODS, 2021, 18 (02) :203-+
[19]   Association of left atrial volume index and all-cause mortality in patients referred for routine cardiovascular magnetic resonance: a multicenter study [J].
Khan, Mohammad A. ;
Yang, Eric Y. ;
Zhan, Yang ;
Judd, Robert M. ;
Chan, Wenyaw ;
Nabi, Faisal ;
Heitner, John F. ;
Kim, Raymond J. ;
Klem, Igor ;
Nagueh, Sherif F. ;
Shah, Dipan J. .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2019, 21 (1)
[20]   Statement on imaging and pulmonary hypertension from the Pulmonary Vascular Research Institute (PVRI) [J].
Kiely, David G. ;
Levin, David L. ;
Hassoun, Paul M. ;
Ivy, Dunbar ;
Jone, Pei-Ni ;
Bwika, Jumaa ;
Kawut, Steven M. ;
Lordan, Jim ;
Lungu, Angela ;
Mazurek, Jeremy A. ;
Moledina, Shahin ;
Olschewski, Horst ;
Peacock, Andrew J. ;
Puri, G. D. ;
Rahaghi, Farbod N. ;
Schafer, Michal ;
Schiebler, Mark ;
Screaton, Nicholas ;
Tawhai, Merryn ;
van Beek, Edwin J. R. ;
Vonk-Noordegraaf, Anton ;
Vandepool, Rebecca ;
Wort, Stephen J. ;
Zhao, Lan ;
Wild, Jim M. ;
Vogel-Claussen, Jens ;
Swift, Andrew J. .
PULMONARY CIRCULATION, 2019, 9 (03)