Applications of artificial intelligence in computed tomography imaging for phenotyping pulmonary hypertension

被引:3
作者
Sharkey, Michael J. [1 ,2 ]
Checkley, Elliot W. [1 ]
Swift, Andrew J. [1 ,3 ,4 ]
机构
[1] Univ Sheffield, Dept Clin Med, Sheffield, England
[2] Sheffield Teaching Hosp NHS Fdn Trust, Imaging Lab 3D, Sheffield, England
[3] Univ Sheffield, Insigneo Inst Sil Med, Sheffield, England
[4] Natl Inst Hlth & Care Res, Sheffield Biomed Res Ctr, Sheffield, England
基金
英国惠康基金;
关键词
artificial intelligence; computer tomography; pulmonary hypertension; CT;
D O I
10.1097/MCP.0000000000001103
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Purpose of reviewPulmonary hypertension is a heterogeneous condition with significant morbidity and mortality. Computer tomography (CT) plays a central role in determining the phenotype of pulmonary hypertension, informing treatment strategies. Many artificial intelligence tools have been developed in this modality for the assessment of pulmonary hypertension. This article reviews the latest CT artificial intelligence applications in pulmonary hypertension and related diseases.Recent findingsMultistructure segmentation tools have been developed in both pulmonary hypertension and nonpulmonary hypertension cohorts using state-of-the-art UNet architecture. These segmentations correspond well with those of trained radiologists, giving clinically valuable metrics in significantly less time. Artificial intelligence lung parenchymal assessment accurately identifies and quantifies lung disease patterns by integrating multiple radiomic techniques such as texture analysis and classification. This gives valuable information on disease burden and prognosis. There are many accurate artificial intelligence tools to detect acute pulmonary embolism. Detection of chronic pulmonary embolism proves more challenging with further research required.SummaryThere are numerous artificial intelligence tools being developed to identify and quantify many clinically relevant parameters in both pulmonary hypertension and related disease cohorts. These potentially provide accurate and efficient clinical information, impacting clinical decision-making.
引用
收藏
页码:464 / 472
页数:9
相关论文
共 47 条
[1]   Diagnostic accuracy and performance of artificial intelligence in measuring left atrial volumes and function on multiphasic CT in patients with atrial fibrillation [J].
Aquino, Gilberto J. ;
Chamberlin, Jordan ;
Yacoub, Basel ;
Kocher, Madison R. ;
Kabakus, Ismail ;
Akkaya, Selcuk ;
Mercer, Megan ;
Waltz, Jeffrey ;
Fiegel, Matthew ;
Leaphart, Nathan ;
Jacob, Athira ;
Gulsun, Mehmet Akif ;
Gilkes, James ;
Stephenson, Joe ;
Sharma, Puneet ;
Sahbaee, Pooyan ;
Schoepf, Joseph ;
Zimmerman, Stefan ;
Field, Michael E. ;
Agha, Ali M. ;
Burt, Jeremy R. .
EUROPEAN RADIOLOGY, 2022, 32 (08) :5256-5264
[2]   How artificial intelligence improves radiological interpretation in suspected pulmonary embolism [J].
Ben Cheikh, Alexandre ;
Gorincour, Guillaume ;
Nivet, Hubert ;
May, Julien ;
Seux, Mylene ;
Calame, Paul ;
Thomson, Vivien ;
Delabrousse, Eric ;
Crombe, Amandine .
EUROPEAN RADIOLOGY, 2022, 32 (09) :5831-5842
[3]   Deep learning-based whole-heart segmentation in 4D contrast-enhanced cardiac CT [J].
Bruns, Steffen ;
Wolterink, Jelmer M. ;
van den Boogert, Thomas P. W. ;
Runge, Jurgen H. ;
Bouma, Berto J. ;
Henriques, Jose P. ;
Baan, Jan ;
Viergever, Max A. ;
Planken, R. Nils ;
Isgum, Ivana .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 142
[4]   Artificial Intelligence in Emergency Radiology: Where Are We Going? [J].
Cellina, Michaela ;
Ce, Maurizio ;
Irmici, Giovanni ;
Ascenti, Velio ;
Caloro, Elena ;
Bianchi, Lorenzo ;
Pellegrino, Giuseppe ;
D'Amico, Natascha ;
Papa, Sergio ;
Carrafiello, Gianpaolo .
DIAGNOSTICS, 2022, 12 (12)
[5]   Deep learning-based automatic segmentation of cardiac substructures for lung cancers [J].
Chen, Xinru ;
Mumme, Raymond P. ;
Corrigan, Kelsey L. ;
Mukai-Sasaki, Yuki ;
Koutroumpakis, Efstratios ;
Palaskas, Nicolas L. ;
Nguyen, Callistus M. ;
Zhao, Yao ;
Huang, Kai ;
Yu, Cenji ;
Xu, Ting ;
Daniel, Aji ;
Balter, Peter A. ;
Zhang, Xiaodong ;
Niedzielski, Joshua S. ;
Shete, Sanjay S. ;
Deswal, Anita ;
Court, Laurence E. ;
Liao, Zhongxing ;
Yang, Jinzhong .
RADIOTHERAPY AND ONCOLOGY, 2024, 191
[6]   Clinical-radiological-pathological correlation in pulmonary arterial hypertension [J].
Condliffe, Robin ;
Durrington, Charlotte ;
Hameed, Abdul ;
Lewis, Robert A. ;
Venkateswaran, Rajamiyer ;
Gopalan, Deepa ;
Dorfmueller, Peter .
EUROPEAN RESPIRATORY REVIEW, 2023, 32 (170)
[7]   Systematic pulmonary embolism follow-up increases diagnostic rates of chronic thromboembolic pulmonary hypertension and identifies less severe disease: results from the ASPIRE Registry [J].
Durrington, Charlotte ;
Hurdman, Judith A. ;
Elliot, Charlie A. ;
Maclean, Rhona ;
Van Veen, Joost ;
Saccullo, Giorgia ;
De-Foneska, Duneesha ;
Swift, Andrew J. ;
Smitha, Rajaram ;
Hill, Catherine ;
Thomas, Steven ;
Dwivedi, Krit ;
Alabed, Samer ;
Wild, James M. ;
Charalampopoulos, Athanasios ;
Hameed, Abdul ;
Rothman, Alexander M. K. ;
Watson, Lisa ;
Hamilton, Neil ;
Thompson, A. A. Roger ;
Condliffe, Robin ;
Kiely, David G. .
EUROPEAN RESPIRATORY JOURNAL, 2024, 63 (03)
[8]  
Dwivedi K, 2024, RADIOLOGY, V310, DOI 10.1148/radiol.231718
[9]   External validation, radiological evaluation, and development of deep learning automatic lung segmentation in contrast-enhanced chest CT [J].
Dwivedi, Krit ;
Sharkey, Michael ;
Alabed, Samer ;
Langlotz, Curtis P. ;
Swift, Andy J. ;
Bluethgen, Christian .
EUROPEAN RADIOLOGY, 2024, 34 (04) :2727-2737
[10]   Automated left atrial time-resolved segmentation in MRI long-axis cine images using active contours [J].
Gonzales, Ricardo A. ;
Seemann, Felicia ;
Lamy, Jerome ;
Arvidsson, Per M. ;
Heiberg, Einar ;
Murray, Victor ;
Peters, Dana C. .
BMC MEDICAL IMAGING, 2021, 21 (01)