Approach to Bearing Fault Diagnosis: CNN-Based Classification Across Different Preprocessing Techniquese

被引:0
作者
Jachymczyk, Urszula [1 ]
Knap, Pawel [1 ]
Balazy, Patryk [1 ]
Podlasek, Szymon [1 ]
Lalik, Krzysztof [1 ]
机构
[1] AGH Univ Krakow, Fac Mech Engn & Robot, Krakow, Poland
来源
2024 25TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE, ICCC 2024 | 2024年
关键词
Vibration Analysis; Condition Monitoring Systems; Predictive Maintenance; Signal Processing; Deep Learning;
D O I
10.1109/ICCC62069.2024.10569862
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a rigorous investigation into the efficacy of diverse preprocessing methods for bearing fault classification, leveraging the comprehensive CWRU dataset. Four distinct approaches were explored: raw data analysis, Fast Fourier Transform (FFT), Short-Time Fourier Transform (STFT), and Continuous Wavelet Transform (CWT). The study introduces a Convolutional Neural Network (CNN) as the underlying algorithm for fault classification. Through extensive experimentation and analysis, we assess the performance of CNN in conjunction with each preprocessing technique. The results provide valuable insights into the strengths and limitations of raw data and frequency-domain representations, highlighting the impact on the accuracy of fault classification in machinery health monitoring applications, which was decided to be the main score in models evaluation. This comparative analysis can not only contribute to the advancement of condition monitoring but also assist practitioners in selecting optimal preprocessing methods for their specific needs.
引用
收藏
页数:5
相关论文
共 50 条
[21]   Endocrine CNN-Based Fault Detection for DC Motors [J].
Djordjevic, Andjela D. ;
Milovanovic, Miroslav B. ;
Milojkovic, Marko T. ;
Petrovic, Jelena G. ;
Nikolic, Sasa S. .
ELEKTRONIKA IR ELEKTROTECHNIKA, 2024, 30 (03) :4-14
[22]   CNN-Based Image Analysis for Malaria Diagnosis [J].
Liang, Zhaohui ;
Powell, Andrew ;
Ersoy, Ilker ;
Poostchi, Mahdieh ;
Silamut, Kamolrat ;
Palaniappan, Kannappan ;
Guo, Peng ;
Hossain, Md Amir ;
Sameer, Antani ;
Maude, Richard James ;
Huang, Jimmy Xiangji ;
Jaeger, Stefan ;
Thoma, George .
2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, :493-496
[23]   Deep Learning Based Approach for Bearing Fault Diagnosis [J].
He, Miao ;
He, David .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2017, 53 (03) :3057-3065
[24]   End-to-end CNN + LSTM deep learning approach for bearing fault diagnosis [J].
Amin Khorram ;
Mohammad Khalooei ;
Mansoor Rezghi .
Applied Intelligence, 2021, 51 :736-751
[25]   HierarchyNet: Hierarchical CNN-Based Urban Building Classification [J].
Taoufiq, Salma ;
Nagy, Balazs ;
Benedek, Csaba .
REMOTE SENSING, 2020, 12 (22) :1-20
[26]   A Preprocessing by Using Multiple Steganography for Intentional Image Downsampling on CNN-Based Steganalysis [J].
Kato, Hiroya ;
Osuge, Kyohei ;
Haruta, Shuichiro ;
Sasase, Iwao .
IEEE ACCESS, 2020, 8 (08) :195578-195593
[27]   Caffe CNN-based classification of hyperspectral images on GPU [J].
Garea, Alberto S. ;
Heras, Dora B. ;
Arguello, Francisco .
JOURNAL OF SUPERCOMPUTING, 2019, 75 (03) :1065-1077
[28]   Caffe CNN-based classification of hyperspectral images on GPU [J].
Alberto S. Garea ;
Dora B. Heras ;
Francisco Argüello .
The Journal of Supercomputing, 2019, 75 :1065-1077
[29]   Fusion Methods for CNN-Based Automatic Modulation Classification [J].
Zheng, Shilian ;
Qi, Peihan ;
Chen, Shichuan ;
Yang, Xiaoniu .
IEEE ACCESS, 2019, 7 :66496-66504
[30]   Few-Shot-Learning for Scar Recognition: A CNN-based Binary Classification Approach [J].
An, Dong-Ju ;
Yoo, In-Sang ;
Jo, Jeong-Min ;
Lee, Woo-Jeong ;
Yu, Hye-Jin ;
Park, Seung .
2024 INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS, AND COMMUNICATIONS, ITC-CSCC 2024, 2024,