POLYNOMIAL D(4)-QUADRUPLES OVER GAUSSIAN INTEGERS

被引:0
作者
Trebjesanin, Marija bliznac [1 ]
Bujacic, Sanda [2 ]
机构
[1] Univ Split, Fac Sci, Rudera Boskov 33, Split 21000, Croatia
[2] Univ Rijeka, Fac Math, Radmile Matejc 2, Rijeka 51000, Croatia
关键词
Diophantine m-tuples; polynomials; regular quadruples; DIOPHANTUS; VARIANT;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set {a, b, c, d} of four non-zero distinct polynomials in Z[i][X] is said to be a Diophantine D(4)-quadruple if the product of any two of its distinct elements increased by 4 is a square of some polynomial in Z[i][X]. In this paper we prove that every D(4)-quadruple in Z[i][X] is regular, or equivalently that the equation (a + b - c - d)(2) = (ab + 4)(cd + 4) holds for every D(4)-quadruple in Z[i][X].
引用
收藏
页码:1 / 31
页数:31
相关论文
共 15 条
[1]   On the Polynomial Quadruples with the Property D(-1;1) [J].
Bliznac Trebjesanin, Marija ;
Filipin, Alan ;
Jurasic, Ana .
TOKYO JOURNAL OF MATHEMATICS, 2018, 41 (02) :527-540
[2]   There is no Diophantine D(-1)$D(-1)$-quadruple [J].
Bonciocat, Nicolae Ciprian ;
Cipu, Mihai ;
Mignotte, Maurice .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 105 (01) :63-99
[3]   GENERALIZATION OF A PROBLEM OF DIOPHANTUS [J].
DUJELLA, A .
ACTA ARITHMETICA, 1993, 65 (01) :15-27
[4]   Complete solution of a problem of Diophantus and Euler [J].
Dujella, A ;
Fuchs, C .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 71 :33-52
[5]   Complete solution of the polynomial version of a problem of Diophantus [J].
Dujella, A ;
Fuchs, C .
JOURNAL OF NUMBER THEORY, 2004, 106 (02) :326-344
[6]  
Dujella A., 2002, Period. Math. Hungar., V45, P21
[7]   A polynomial variant of a problem of diophantus for pure powers [J].
Dujella, Andrej ;
Fuchs, Clemens ;
Luca, Florian .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (01) :57-71
[8]   On a problem of diophantus with polynomials [J].
Dujella, Andrej ;
Luca, Florian .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2007, 37 (01) :131-157
[9]   ON THE SIZE OF SETS IN A POLYNOMIAL VARIANT OF A PROBLEM OF DIOPHANTUS [J].
Dujella, Andrej ;
Jurasic, Ana .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (07) :1449-1471
[10]  
Filipin A, 2008, MATH COMMUN, V13, P45