Stabilizing Graphite Anode in Electrolytes with Nanoscale Anion Networking for High-Rate Lithium Storage

被引:1
|
作者
Yu, Yikang [1 ]
Xu, Jiayi [2 ]
Duanmu, Kaining [3 ]
Shutthanandan, Vaithiyalingam [3 ]
Wi, Sungun [3 ]
Yang, Zhenzhen [2 ]
Liu, Yuzi [4 ]
Lyu, Xingyi [5 ]
Qian, Kun [5 ]
Agarwal, Mangilal [6 ,7 ]
Zhang, Zhengcheng [2 ]
Zhang, Yugang [8 ]
Li, Tao [5 ,9 ]
Liu, Cong [2 ]
Murugesan, Vijayakumar [3 ]
Xie, Jian [1 ]
机构
[1] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[2] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[3] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA
[4] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[5] Northern Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA
[6] Indiana Univ Indianapolis, Dept Biomed Engn, Indianapolis, IN 46202 USA
[7] Indiana Univ Indianapolis, Integrated Nanosyst Dev Inst, Indianapolis, IN 46202 USA
[8] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[9] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Lemont, IL 60439 USA
来源
ACS ENERGY LETTERS | 2024年 / 9卷 / 10期
基金
美国国家科学基金会;
关键词
LIQUID-PHASE EXFOLIATION; LI-ION; PROPYLENE CARBONATE; INTERCALATION; PERFORMANCE; SOLVATION; INTERFACE; CHEMISTRY; MECHANISM; GRAPHENE;
D O I
10.1021/acsenergylett.4c02011
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphite is the preferred anode material in commercial lithium-ion batteries (LIBs), but its limited compatibility with various organic molecules restricts the electrolyte solvent options. The primary challenge is solvent co-intercalation with Li ions, leading to graphite layer exfoliation. As a result, electrolyte selection often relies on ethylene carbonate (EC)-based solvents. In this study, we introduce electrolytes featuring a nanoscale anion network ordering that hinders the liquid-phase exfoliation of graphite. This network, formed from concentrated long-chain lithium salts, traps free dioxolane (DOL) molecules, reducing the interactions between graphite particles and solvents during Li intercalation. Our findings reveal a mechanism that stabilizes graphite in otherwise unstable solvents with concentrated salts like LiTFSI, providing key insights for improving LIB performance by addressing electrolyte limitations on graphite anodes.
引用
收藏
页码:5002 / 5011
页数:10
相关论文
共 50 条
  • [21] Facilitating prelithiation of silicon carbon anode by localized high-concentration electrolyte for high-rate and long-cycle lithium storage
    Yuanxing Zhang
    Borong Wu
    Jiaying Bi
    Xinyu Zhang
    Daobin Mu
    XinYu Zhang
    Ling Zhang
    Yao Xiao
    Feng Wu
    Carbon Energy, 2024, 6 (06) : 220 - 237
  • [22] Confined Fe2O3 Nanoparticles on Graphite Foam as High-Rate and Stable Lithium-Ion Battery Anode
    Guan, Cao
    Chao, Dongliang
    Wang, Yadong
    Wang, John
    Liu, Jinping
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2016, 33 (08) : 487 - 492
  • [23] Melt-Spinning Mesophase Pitch-Based Graphite Fibers as Anode Materials for High-Rate Lithium-Ion Batteries
    Li, Jianlin
    Wang, Qian
    Zhang, Jianhui
    BATTERIES-BASEL, 2023, 9 (11):
  • [24] Intrinsic Lithiophilicity of Li-Garnet Electrolytes Enabling High-Rate Lithium Cycling
    Zheng, Hongpeng
    Wu, Shaoping
    Tian, Ran
    Xu, Zhenming
    Zhu, Hong
    Duan, Huanan
    Liu, Hezhou
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (06)
  • [25] High-rate lithium storage and kinetic investigations of a cubic Mn2SnO4@Carbon nanotube composite anode
    Ali, Ghulam
    Mehboob, Sheeraz
    Ahmad, Mashkoor
    Akbar, Muhammad
    Kim, Sang-Ok
    Ha, Heung Yong
    Chung, Kyung Yoon
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 823 (823)
  • [26] Regulating structural units and morphology of SiOC anode for enhanced high-rate storage and long-life lithium ion batteries
    Wang, Juan
    Gao, Yujie
    He, Zhengqiu
    Feng, Xiang
    Lin, Dong
    Kong, Debin
    Zhang, Xinghao
    Hu, Han
    Guo, Zaiping
    Chen, De
    JOURNAL OF POWER SOURCES, 2024, 621
  • [27] Intramolecular deformation of zeotype-borogermanate toward a three-dimensional porous germanium anode for high-rate lithium storage
    Yoon, Taeseung
    Song, Gyujin
    Harzandi, Ahmad M.
    Ha, Miran
    Choi, Sungho
    Shadman, Sahar
    Ryu, Jaegeon
    Bok, Taesoo
    Park, Soojin
    Kim, Kwang S.
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (33) : 15961 - 15967
  • [28] Synthesis of a zinc ferrite effectively encapsulated by reduced graphene oxide composite anode material for high-rate lithium ion storage
    Tan, Qingke
    Wang, Chao
    Cao, Yangdi
    Liu, Xuehua
    Cao, Haijie
    Wu, Guanglei
    Xu, Binghui
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 579 : 723 - 732
  • [29] Three-dimensional porous polyimide anode for high-rate lithium ion batteries
    Zhang, Qiuyitong
    Cheng, Haiwen
    Wei, Zijie
    Zhu, Sibin
    Yu, Lun
    Jiang, Zilan
    Tang, Xufeng
    Tian, Tian
    Wang, Yadong
    Tang, Haolin
    JOURNAL OF ENERGY STORAGE, 2024, 86
  • [30] Nitrogen-Doped Carbon Nanocages as High-Rate Anode for Lithium Ion Batteries
    Lyu Zhiyang
    Feng Rui
    Zhao Jin
    Fan Hao
    Xu Dan
    Wu Qiang
    Yang Lijun
    Chen Qiang
    Wang Xizhang
    Hu Zheng
    ACTA CHIMICA SINICA, 2015, 73 (10) : 1013 - 1017