Schizophrenia diagnosis using the GRU-layer's alpha-EEG rhythm's dependability

被引:2
作者
Sahu, Pankaj Kumar [1 ]
Jain, Karan [1 ]
机构
[1] Dr BR Ambedkar Natl Inst Technol, Dept Instrumentat & Control Engn, Jalandhar 144008, Punjab, India
关键词
Gru: the "gated recurrent unit (gru); rdcgru: the "rudiment densely-coupled convolutional gru; dcgru: the "densely-coupled convolu- tional gru; alpha-EEG rhythm; BAND OSCILLATIONS; NEGATIVE SYMPTOMS; ABNORMALITIES; BIPOLAR; RISK;
D O I
10.1016/j.pscychresns.2024.111886
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Verifying schizophrenia (SZ) can be assisted by deep learning techniques and patterns in brain activity observed in alpha-EEG recordings. The suggested research provides evidence of the reliability of alpha-EEG rhythm in a Gated-Recurrent-Unit-based deep-learning model for investigating SZ. This study suggests Rudiment DenselyCoupled Convolutional Gated Recurrent Unit (RDCGRU) for the various EEG-rhythm-based (gamma, beta, alpha, theta, and delta) diagnoses of SZ. The model includes multiple 1-D-Convolution (Con-1-D) folds with steps greater than 1, which enables the model to programmatically and effectively learn how to reduce the incoming signal. The Con-1-D layers and numerous Gated Recurrent Unit (GRU) layers comprise the Exponential-LinearUnit activation function. This powerful activation function facilitates in-deep-network training and improves classification performance. The Densely-Coupled Convolutional Gated Recurrent Unit (DCGRU) layers enable RDCGRU to address the training accuracy loss brought on by vanishing or exploding gradients, and this might make it possible to develop intense, deep versions of RDCGRU for more complex problems. The sigmoid activation function is implemented in the digital (binary) classifier's output nodes. The RDCGRU deep learning model attained the most excellent accuracy, 88.88 %, with alpha-EEG rhythm. The research achievements: The RDCGRU deep learning model's GRU cells responded superiorly to the alpha-EEG rhythm in EEG-based verification of SZ.
引用
收藏
页数:8
相关论文
共 25 条
[1]   Identification of Children at Risk of Schizophrenia via Deep Learning and EEG Responses [J].
Ahmedt-Aristizabal, David ;
Fernando, Tharindu ;
Denman, Simon ;
Robinson, Jonathan Edward ;
Sridharan, Sridha ;
Johnston, Patrick J. ;
Laurens, Kristin R. ;
Fookes, Clinton .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (01) :69-76
[2]   Abnormally high EEG alpha synchrony during working memory maintenance in twins discordant for schizophrenia [J].
Bachman, Peter ;
Kim, Junghoon ;
Yee, Cindy M. ;
Therman, Sebastian ;
Manninen, Marko ;
Lonnqvist, Jouko ;
Kaprio, Jaakko ;
Huttunen, Matti O. ;
Naatanen, Risto ;
Cannon, Tyrone D. .
SCHIZOPHRENIA RESEARCH, 2008, 103 (1-3) :293-297
[3]  
Chung Junyoung, 2014, ARXIV
[4]  
Clevert Djork-Arne, 2016, 4 INT C LEARN REPR I
[5]   Study of the Effect of Combining Activation Functions in a Convolutional Neural Network [J].
Guevara, M. ;
Cruz, V ;
Vergara, O. ;
Nandayapa, M. ;
Ochoa, H. ;
Sossa, H. .
IEEE LATIN AMERICA TRANSACTIONS, 2021, 19 (05) :844-852
[6]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[7]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[8]   Association of individual resting state EEG alpha frequency and cerebral blood flow [J].
Jann, Kay ;
Koenig, Thomas ;
Dierks, Thomas ;
Boesch, Chris ;
Federspiel, Andrea .
NEUROIMAGE, 2010, 51 (01) :365-372
[9]   Resting state EEG power and coherence abnormalities in bipolar disorder and schizophrenia [J].
Kam, Julia W. Y. ;
Bolbecker, Amanda R. ;
O'Donnell, Brian F. ;
Hetrick, William P. ;
Brenner, Colleen A. .
JOURNAL OF PSYCHIATRIC RESEARCH, 2013, 47 (12) :1893-1901
[10]   Individual Alpha Frequency Relates to the Sound-Induced Flash Illusion [J].
Keil, Julian ;
Senkowski, Daniel .
MULTISENSORY RESEARCH, 2017, 30 (06) :565-578