Modeling the dynamics of Covid-19 in Japan: employing data-driven deep learning approach

被引:0
|
作者
Nelson, S. Patrick [1 ]
Raja, R. [2 ,3 ]
Eswaran, P. [4 ]
Alzabut, J. [5 ,6 ]
Rajchakit, G. [7 ]
机构
[1] Alagappa Univ, Dept Ind Chem, Karaikkudi 630004, India
[2] Alagappa Univ, Ramanujan Ctr Higher Math, Karaikkudi 630004, India
[3] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[4] Alagappa Univ, Dept Comp Applicat, Karaikkudi 630004, India
[5] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh 12435, Saudi Arabia
[6] OSTIM Tech Univ, Dept Ind Engn, TR-06374 Ankara, Turkiye
[7] Maejo Univ, Dept Math & Stat, Chiang Mai, Thailand
关键词
Mathematical modeling; Equilibrium point; Machine learning; Deep learning; Physics informed neural network; MALARIA;
D O I
10.1007/s13042-024-02301-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper aims to build the SVIHRD model for COVID-19 and it also simultaneously conduct stability and numerical analysis on the transmission of COVID-19. Here we do a mathematical analysis for the SVIHRD model, which involves positivity, boundedness, uniqueness, and proving both global and local stability. In the process of numerical simulation, we use real-world data for COVID-19 cases in Japan. An important feature presents in this paper, is that we replace the usual numerical solving technique for obtaining the parameters with a Physics Informed Neural Network (PINN). This PINN needs an order of time instances as input and the number of Susceptible (S), Vaccinated (V), Infected (I), Hospitalized (H), Recovered (R), and Death (D) people per time instances to learn specific parameters of the model using loss functions. We developed three different PINN setups-the baseline model, configuration-I, and configuration-II-to explore and optimize these parameters for modeling COVID-19 dynamics in Japan. During the validation process, we evaluated how well the learned parameters from these three PINN architectures predicted real infection data for the next two months. The baseline model, with four hidden layers and 32 neurons each, performed well with an R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>{2}$$\end{document} value of 0.8038 and a Wilcoxon signed-rank test p value of 0.001556, closely matching actual infection data. A sensitivity analysis of the baseline model's parameters showed that the vaccination rate sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document} is the most sensitive.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] COVID-19: data-driven dynamics, statistical and distributed delay models, and observations
    Liu, Xianbo
    Zheng, Xie
    Balachandran, Balakumar
    NONLINEAR DYNAMICS, 2020, 101 (03) : 1527 - 1543
  • [22] Explainable death toll motion modeling: COVID-19 data-driven narratives
    Veloso, Adriano
    Ziviani, Nivio
    PLOS ONE, 2022, 17 (04):
  • [23] Data-Driven Modeling and Analysis for COVID-19 Pandemic Hospital Beds Planning
    Zhang, Tong
    Lu, Yiruo
    Guan, Yongpei
    Zhong, Xiang
    Hogan, Thanh
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2023, 20 (03) : 1551 - 1564
  • [24] Data-Driven Modeling to Facilitate Policymaking in Fighting to Contain the COVID-19 Pandemic
    Qiu, Robin G.
    Wang, Ethan
    Gong, Iris
    BIG DATA, IOT, AND AI FOR A SMARTER FUTURE, 2021, 185 : 320 - 329
  • [25] Data-Driven Deep Learning Neural Networks for Predicting the Number of Individuals Infected by COVID-19 Omicron Variant
    Oluwasakin, Ebenezer O.
    Khaliq, Abdul Q. M.
    EPIDEMIOLOGIA, 2023, 4 (04): : 420 - 453
  • [26] Chaos of COVID-19 Superspreading Events: An Analysis Via a Data-driven Approach
    Ganegoda, N. C.
    Perera, S. S. N.
    JOURNAL OF HEALTH MANAGEMENT, 2023, 25 (03) : 514 - 525
  • [27] Estimating the infection horizon of COVID-19 in eight countries with a data-driven approach
    Barmparis, G.D.
    Tsironis, G.P.
    Chaos, Solitons and Fractals, 2020, 135
  • [28] Estimating the infection horizon of COVID-19 in eight countries with a data-driven approach
    Barmparis, G. D.
    Tsironis, G. P.
    CHAOS SOLITONS & FRACTALS, 2020, 135
  • [29] A data-driven approach on COVID-19 restrictions and its effectiveness in Latin America
    Molina, Yusdivia
    Iglesias, Jorge G.
    Montesinos, Luis
    2024 IEEE 37TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS 2024, 2024, : 176 - 181
  • [30] A data-driven approach to identify risk profiles and protective drugs in COVID-19
    Cippa, Pietro E.
    Cugnata, Federica
    Ferrari, Paolo
    Brombin, Chiara
    Ruinelli, Lorenzo
    Bianchi, Giorgia
    Beria, Nicola
    Schulz, Lukas
    Bernasconi, Enos
    Merlani, Paolo
    Ceschi, Alessandro
    Di Serio, Clelia
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (01)