Decarbonized Natural Gas Supply Chain with Low-Carbon Gaseous Fuels: A Life Cycle Environmental and Economic Assessment

被引:0
|
作者
Kotagodahett, Ravihari [1 ]
Hewage, Kasun [1 ]
Sadiq, Rehan [1 ]
机构
[1] Univ British Columbia, Sch Engn, Okanagan Campus,1137 Alumni Ave, Kelowna, BC V1V IV7, Canada
来源
PROCEEDINGS OF THE CANADIAN SOCIETY OF CIVIL ENGINEERING ANNUAL CONFERENCE 2022, VOL 3, CSCE 2022 | 2024年 / 359卷
关键词
Life cycle assessment; Life cycle cost; Low-carbon gaseous fuels; Hydrogen; Renewable natural gas; Decarbonization; GREENHOUSE-GAS; HYDROGEN; LNG;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Continuous growth in the economy has caused an increasing demand for energy resulting in numerous environmental concerns. Despite the popularity gained by renewable energy, certain economic activities still require fossil fuels. Among existing fossil fuels, natural gas (NG) plays a critical role in ensuring Canada's energy security. However, the Canadian oil and gas sector is a major contributor to national greenhouse gas emissions. Therefore, rigorous actions are required within the NG industry to ensure sustainability in its operations. Hydrogen and renewable natural gas (RNG) are identified as low-carbon gaseous fuels capable of decarbonizing the NG supply chain. RNG has already been used in the market, whereas hydrogen is gaining increased attention from utilities due to its ability to produce in higher capacities than RNG. Moreover, hydrogen blending into NG systems is piloted worldwide as an effort to reduce emissions from building heating and other carbon-intensive applications in the energy sector. However, the feasibility of different NG supply chain configurations coupled with low-carbon gaseous fuels is still under question due to multiple economic and environmental factors. Therefore, this study attempts to conduct a cradle-to-grave life cycle environmental and economic assessment of different NG supply chain configurations coupled with hydrogen and RNG. A life cycle thinking-based methodological framework is proposed to evaluate and compare the different supply chain configurations. The framework is presented with a case study for BC's natural gas sector with six supply chain configurations for the Canadian NG industry. The life cycle environmental and economic performance of the six configurations were evaluated using life cycle assessment and life cycle costing. The performance was integrated using the eco-efficiency analysis tool. According to the study results, replacing RNG with NG is shown to be the most desirable option. However, hydrogen blending with natural gas is still of high cost. Furthermore, the costs and environmental impacts of hydrogen production vary with its production method. Hydrogen production with electrolysis has lower impacts compared to hydrogen production with steam methane reforming (SMR). The findings from this study are geared toward enabling decision-makers and investors to gain a more holistic view of investment decisions related to green energy initiatives in the NG sector.
引用
收藏
页码:999 / 1014
页数:16
相关论文
共 50 条
  • [1] Decarbonized Natural Gas Supply Chain with Low-Carbon Gaseous Fuels: A Life Cycle Environmental and Economic Assessment
    Kotagodahett, Ravihari
    Hewage, Kasun
    Sadiq, Rehan
    PROCEEDINGS OF THE CANADIAN SOCIETY OF CIVIL ENGINEERING ANNUAL CONFERENCE 2022, VOL 4, CSCE 2022, 2024, 367 : 999 - 1014
  • [2] Techno-economic and life cycle greenhouse gas emissions assessment of liquefied natural gas supply chain in China
    Zhang, Jinrui
    Meerman, Hans
    Benders, Rene
    Faaij, Andre
    ENERGY, 2021, 224
  • [3] Life cycle assessment of measures towards a low-carbon flat glass production
    Jost, Daniel
    Kanzurova, Sara
    Nilges, Benedikt
    Reinert, Christiane
    von der Assen, Niklas
    JOURNAL OF CLEANER PRODUCTION, 2025, 501
  • [4] Blending low-carbon hydrogen with natural gas: Impact on energy and life cycle emissions in natural gas pipelines
    Cappello, Vincenzo
    Sun, Pingping
    Elgowainy, Amgad
    GAS SCIENCE AND ENGINEERING, 2024, 128
  • [5] Potential role of natural gas infrastructure in China to supply low-carbon gases during
    Zhang, Jinrui
    Meerman, Hans
    Benders, Rene
    Faaij, Andre
    APPLIED ENERGY, 2022, 306
  • [7] The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material
    Rezvani Ghomi, Erfan
    Khosravi, Fatemeh
    Saedi Ardahaei, Ali
    Dai, Yunqian
    Neisiany, Rasoul Esmaeely
    Foroughi, Firoozeh
    Wu, Min
    Das, Oisik
    Ramakrishna, Seeram
    POLYMERS, 2021, 13 (11)
  • [8] Life Cycle Assessment Tool for Food Supply Chain Environmental Evaluation
    da Costa, Tamiris Pacheco
    Gillespie, James
    Pelc, Katarzyna
    Adefisan, Abi
    Adefisan, Michael
    Ramanathan, Ramakrishnan
    Murphy, Fionnuala
    SUSTAINABILITY, 2023, 15 (01)
  • [9] Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas
    He, Liangce
    Lu, Zhigang
    Zhang, Jiangfeng
    Geng, Lijun
    Zhao, Hao
    Li, Xueping
    APPLIED ENERGY, 2018, 224 : 357 - 370
  • [10] Life cycle assessment-based multiobjective optimisation of synthetic natural gas supply chain: A case study for the Republic of Ireland
    Singlitico, Alessandro
    Goggins, Jamie
    Monaghan, Rory F. D.
    JOURNAL OF CLEANER PRODUCTION, 2020, 258