Laplace-domain crosstalk-free source-encoded elastic full-waveform inversion using time-domain solvers

被引:2
|
作者
Liu, Zhaolun [1 ,2 ]
Hoffmann, Juergen [4 ]
Bachmann, Etienne [3 ]
Cui, Congyue [3 ]
Simons, Frederik J. [3 ]
Tromp, Jeroen [3 ,5 ]
机构
[1] Formerly Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA
[2] Saudi Aramco, Dhahran, Saudi Arabia
[3] Princeton Univ, Dept Geosci, Princeton, NJ USA
[4] DNO ASA, Oslo, Norway
[5] Princeton Univ, Program Appl & Computat Math, Princeton, NJ USA
关键词
BOTTOM-CABLE DATA; SPECTRAL-ELEMENT METHOD; FREQUENCY-DOMAIN; FINITE-DIFFERENCE; MARINE STREAMER; ADJOINT METHODS; PART; PROPAGATION; VALHALL; TOMOGRAPHY;
D O I
10.1190/GEO2023-0351.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Crosstalk-free source-encoded elastic full-waveform inversion (FWI) using time-domain solvers demonstrates skill and efficiency at conducting seismic inversions involving multiple sources and receivers with limited computational resources. A drawback of common formulations of the procedure is that, by sweeping through the frequency domain randomly at a rate of one or a few sparsely sampled frequencies per shot, it is difficult to simultaneously incorporate time-selective data windows, as necessary for the targeting of arrivals or wave packets during the various stages of the inversion. Here, we solve this problem by using the Laplace transform of the data. Using complex-valued frequencies allows for damping the records with flexible decay rates and temporal offsets that target specific traveltimes. We present the theory of crosstalk-free source-encoded FWI in the Laplace domain, develop the details of its implementation, and illustrate the procedure with numerical examples relevant to exploration-scale scenarios.
引用
收藏
页码:R355 / R375
页数:21
相关论文
共 50 条
  • [1] Laplace-Fourier-domain elastic full-waveform inversion using time-domain modeling
    Jun, Hyunggu
    Kim, Youngseo
    Shin, Jungkyun
    Shin, Changsoo
    Min, Dong-Joo
    GEOPHYSICS, 2014, 79 (05) : R195 - R208
  • [2] Robust source-independent elastic full-waveform inversion in the time domain
    Zhang, Qingchen
    Zhou, Hui
    Li, Qingqing
    Chen, Hanming
    Wang, Jie
    GEOPHYSICS, 2016, 81 (02) : R29 - R44
  • [3] Time-domain elastic Gauss-Newton full-waveform inversion: a matrix-free approach
    Chen, Ke
    Sacchi, Mauricio D.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 223 (02) : 1007 - 1039
  • [4] Laplace-domain full-waveform inversion of seismic data lacking low-frequency information
    Ha, Wansoo
    Shin, Changsoo
    GEOPHYSICS, 2012, 77 (05) : R199 - R206
  • [5] A multiscale approach to full-waveform inversion using a sequence of time-domain misfit functions
    Dantas, Renato R. S.
    Medeiros, Walter E.
    Costa, Jesse C.
    GEOPHYSICS, 2019, 84 (04) : R539 - R551
  • [6] Source-independent time-domain vector-acoustic full-waveform inversion
    Zhong, Yu
    Liu, Yangting
    GEOPHYSICS, 2019, 84 (04) : R489 - R505
  • [7] Time-domain extended-source full-waveform inversion: Algorithm and practical workflow
    Guo, Gaoshan
    Operto, Stephane
    Gholami, Ali
    Aghamiry, Hossein S.
    GEOPHYSICS, 2024, 89 (02) : R73 - R94
  • [8] Time-Domain Elastic Full Waveform Inversion With Frequency Normalization
    Fang, Jinwei
    Zhou, Hui
    Li, Yunyue Elita
    Shi, Ying
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [9] Source-independent time-domain waveform inversion using convolved wavefields: Application to the encoded multisource waveform inversion
    Choi, Yunseok
    Alkhalifah, Tariq
    GEOPHYSICS, 2011, 76 (05) : R125 - R134
  • [10] Elastic Full Waveform Inversion With Source-Independent Crosstalk-Free Source-Encoding Algorithm
    Zhang, Qingchen
    Mao, Weijian
    Fang, Jinwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (04): : 2915 - 2927