Enhancing quantum utility: Simulating large-scale quantum spin chains on superconducting quantum computers

被引:8
作者
Chowdhury, Talal Ahmed [1 ,2 ]
Yu, Kwangmin [3 ]
Shamim, Mahmud Ashraf [4 ]
Kabir, M. L. [5 ]
Sufian, Raza Sabbir [6 ,7 ]
机构
[1] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA
[2] Univ Dhaka, Dept Phys, POB 1000, Dhaka, Bangladesh
[3] Brookhaven Natl Lab, Computat Sci Initiat, Upton, NY 11973 USA
[4] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA
[5] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA
[6] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA
[7] Brookhaven Natl Lab, Phys Dept, Upton, NY 11973 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 03期
关键词
EXPONENTIAL OPERATORS; GROUND-STATE; DIMERIZATION; FORMULA; SYSTEMS;
D O I
10.1103/PhysRevResearch.6.033107
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the quantum simulation of the frustrated quantum spin- 12 antiferromagnetic Heisenberg spin chain with competing nearest-neighbor (J1) and next-nearest-neighbor (J2) exchange interactions in the real superconducting quantum computer with qubits ranging up to 100. In particular, we implement the Hamiltonian with the next-nearest neighbor exchange interaction in conjunction with the nearest-neighbor interaction on IBM's superconducting quantum computer and carry out the time evolution of the spin chain by employing the first-order Trotterization. Furthermore, our implementation of the second-order Trotterization for the isotropic Heisenberg spin chain, involving only nearest-neighbor exchange interaction, enables precise measurement of the expectation values of staggered magnetization observable across a range of up to 100 qubits. Notably, in both cases, our approach results in a constant circuit depth in each Trotter step, independent of the number of qubits. Our demonstration of the accurate measurement of expectation values for the large-scale quantum system using superconducting quantum computers designates the quantum utility of these devices for investigating various properties of many-body quantum systems. This will be a stepping stone to achieving the quantum advantage over classical ones in simulating quantum systems before the fault tolerance quantum era.
引用
收藏
页数:16
相关论文
共 73 条
[1]   Simulations of many-body Fermi systems on a universal quantum computer [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1997, 79 (13) :2586-2589
[2]  
[Anonymous], About us
[3]  
[Anonymous], 2023, M3 library
[4]  
[Anonymous], 2023, IBM Quantum system information
[5]   Spin liquids in frustrated magnets [J].
Balents, Leon .
NATURE, 2010, 464 (7286) :199-208
[6]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[7]   Efficient quantum algorithms for simulating sparse Hamiltonians [J].
Berry, Dominic W. ;
Ahokas, Graeme ;
Cleve, Richard ;
Sanders, Barry C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :359-371
[8]   Noisy intermediate-scale quantum algorithms [J].
Bharti, Kishor ;
Cervera-Lierta, Alba ;
Kyaw, Thi Ha ;
Haug, Tobias ;
Alperin-Lea, Sumner ;
Anand, Abhinav ;
Degroote, Matthias ;
Heimonen, Hermanni ;
Kottmann, Jakob S. ;
Menke, Tim ;
Mok, Wai-Keong ;
Sim, Sukin ;
Kwek, Leong-Chuan ;
Aspuru-Guzik, Alan .
REVIEWS OF MODERN PHYSICS, 2022, 94 (01)
[9]   Mitigating measurement errors in multiqubit experiments [J].
Bravyi, Sergey ;
Sheldon, Sarah ;
Kandala, Abhinav ;
Mckay, David C. ;
Gambetta, Jay M. .
PHYSICAL REVIEW A, 2021, 103 (04)
[10]   Constructing Smaller Pauli Twirling Sets for Arbitrary Error Channels [J].
Cai, Zhenyu ;
Benjamin, Simon C. .
SCIENTIFIC REPORTS, 2019, 9 (1) :11281