Multi Task-Guided 6D Object Pose Estimation

被引:0
作者
Thu-Uyen Nguyen [1 ]
Van-Duc Vu [1 ]
Van-Thiep Nguyen [1 ]
Ngoc-Anh Hoang [1 ]
Duy-Quang Vu [1 ]
Duc-Thanh Tran [1 ]
Khanh-Toan Phan [1 ]
Anh-Truong Mai [1 ]
Van-Hiep Duong [1 ]
Cong-Trinh Chan [1 ]
Ngoc-Trung Ho [1 ]
Quang-Tri Duong [1 ]
Phuc-Quan Ngo [1 ]
Dinh-Cuong Hoang [1 ]
机构
[1] FPT Univ Hanoi, Hanoi, Vietnam
来源
PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION TECHNOLOGY, ICIIT 2024 | 2024年
关键词
Pose estimation; robot vision systems; intelligent systems; deep learning; supervised learning; machine vision;
D O I
10.1145/3654522.3654576
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Object pose estimation remains a fundamental challenge in computer vision, with cutting-edge methods relying on both RGB and depth data. Depth information is pivotal, offering crucial geometric cues that enable algorithms to navigate occlusions, fostering a more comprehensive scene under-standing and precise pose estimation. However, RGBD-based methods often require specialized depth sensors, which can be costlier and less accessible compared to standard RGB cameras. Consequently, research has explored techniques aiming to estimate object pose solely from color images. Yet, the absence of depth cues poses challenges in handling occlusions, comprehending object geometry, and resolving ambiguities arising from similar colors or textures. This paper introduces a end-to-end multi-task-guided object pose estimation method, utilizing RGB images as input and producing the 6D pose of multiple object instances. While our approach employs both depth and color images during training, inference relies solely on color images. We incorporate depth images to supervise a depth estimation branch, generating depth-aware features further refined through a cross-task attention module. These enhanced features are pivotal for our object pose estimation. Our method's innovation lies in significantly enhancing feature discriminability and robustness for object pose estimation. Through extensive experiments, we demonstrate competitive performance compared to state-of-the-art methods in object pose estimation.
引用
收藏
页码:215 / 222
页数:8
相关论文
共 50 条
[41]   Semi-Supervised 6D Object Pose Estimation Without Using Real Annotations [J].
Zhou, Guangliang ;
Wang, Deming ;
Yan, Yi ;
Chen, Huiyi ;
Chen, Qijun .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (08) :5163-5174
[42]   Prior-information-guided corresponding point regression network for 6D pose estimation [J].
Gan, Haiqing ;
Wang, Lihui ;
Su, Yuzuwei ;
Ruan, Wenjun ;
Jiao, Xize .
COMPUTERS & GRAPHICS-UK, 2024, 121
[43]   Towards Learning 3d Object Detection and 6d Pose Estimation from Synthetic Data [J].
Rudorfer, Martin ;
Neumann, Lukas ;
Krueger, Joerg .
2019 24TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2019, :1540-1543
[44]   Rotation-invariant 3D convolutional neural networks for 6D object pose estimation [J].
Chen, Zhizhong ;
Wang, Zhihang ;
Xing, Xue Hui ;
Kuai, Tao .
INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2025, 28 (08) :1-9
[45]   Efficient Center Voting for Object Detection and 6D Pose Estimation in 3D Point Cloud [J].
Guo, Jianwei ;
Xing, Xuejun ;
Quan, Weize ;
Yan, Dong-Ming ;
Gu, Qingyi ;
Liu, Yang ;
Zhang, Xiaopeng .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :5072-5084
[46]   A Review on Six Degrees of Freedom (6D) Pose Estimation for Robotic Applications [J].
Chen, Yuanwei ;
Zaman, Mohd Hairi Mohd ;
Ibrahim, Mohd Faisal .
IEEE ACCESS, 2024, 12 :161002-161017
[47]   EdgePose: An Edge Attention Network for 6D Pose Estimation [J].
Feng, Qi ;
Nong, Jian ;
Liang, Yanyan .
MATHEMATICS, 2024, 12 (17)
[48]   6D Pose Estimation for Subsea Intervention in Turbid Waters [J].
Mohammed, Ahmed ;
Kvam, Johannes ;
Thielemann, Jens T. ;
Haugholt, Karl H. ;
Risholm, Petter .
ELECTRONICS, 2021, 10 (19)
[49]   Weakly Supervised 6D Pose Estimation for Robotic Grasping [J].
Li, Yaoxin ;
Sun, Jinghua ;
Li, Xiaoqian ;
Zhang, Zhanpeng ;
Cheng, Hui ;
Wang, Xiaogang .
PROCEEDINGS OF THE 16TH ACM SIGGRAPH INTERNATIONAL CONFERENCE ON VIRTUAL-REALITY CONTINUUM AND ITS APPLICATIONS IN INDUSTRY (VRCAI 2018), 2018,
[50]   GRPoseNet: a generalizable and robust 6D object pose estimation network using sparse RGB views [J].
Shi, Wubin ;
Gai, Shaoyan ;
Da, Feipeng ;
Cai, Zeyu ;
Wang, Jiaoling .
VISUAL COMPUTER, 2025, 41 (10) :8009-8023