Multi Task-Guided 6D Object Pose Estimation

被引:0
作者
Thu-Uyen Nguyen [1 ]
Van-Duc Vu [1 ]
Van-Thiep Nguyen [1 ]
Ngoc-Anh Hoang [1 ]
Duy-Quang Vu [1 ]
Duc-Thanh Tran [1 ]
Khanh-Toan Phan [1 ]
Anh-Truong Mai [1 ]
Van-Hiep Duong [1 ]
Cong-Trinh Chan [1 ]
Ngoc-Trung Ho [1 ]
Quang-Tri Duong [1 ]
Phuc-Quan Ngo [1 ]
Dinh-Cuong Hoang [1 ]
机构
[1] FPT Univ Hanoi, Hanoi, Vietnam
来源
PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION TECHNOLOGY, ICIIT 2024 | 2024年
关键词
Pose estimation; robot vision systems; intelligent systems; deep learning; supervised learning; machine vision;
D O I
10.1145/3654522.3654576
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Object pose estimation remains a fundamental challenge in computer vision, with cutting-edge methods relying on both RGB and depth data. Depth information is pivotal, offering crucial geometric cues that enable algorithms to navigate occlusions, fostering a more comprehensive scene under-standing and precise pose estimation. However, RGBD-based methods often require specialized depth sensors, which can be costlier and less accessible compared to standard RGB cameras. Consequently, research has explored techniques aiming to estimate object pose solely from color images. Yet, the absence of depth cues poses challenges in handling occlusions, comprehending object geometry, and resolving ambiguities arising from similar colors or textures. This paper introduces a end-to-end multi-task-guided object pose estimation method, utilizing RGB images as input and producing the 6D pose of multiple object instances. While our approach employs both depth and color images during training, inference relies solely on color images. We incorporate depth images to supervise a depth estimation branch, generating depth-aware features further refined through a cross-task attention module. These enhanced features are pivotal for our object pose estimation. Our method's innovation lies in significantly enhancing feature discriminability and robustness for object pose estimation. Through extensive experiments, we demonstrate competitive performance compared to state-of-the-art methods in object pose estimation.
引用
收藏
页码:215 / 222
页数:8
相关论文
共 50 条
[31]   A 6D Object Pose Estimation Method combining Self-attention Mechanism [J].
Sun, Yifan ;
Dai, Sumin ;
Dang, Jianwu ;
Yong, Jiu .
2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, :1315-1319
[32]   Multi-Modal Hand-Object Pose Estimation With Adaptive Fusion and Interaction Learning [J].
Hoang, Dinh-Cuong ;
Tan, Phan Xuan ;
Nguyen, Anh-Nhat ;
Vu, Duy-Quang ;
Vu, Van-Duc ;
Nguyen, Thu-Uyen ;
Hoang, Ngoc-Anh ;
Phan, Khanh-Toan ;
Tran, Duc-Thanh ;
Nguyen, Van-Thiep ;
Duong, Quang-Tri ;
Ho, Ngoc-Trung ;
Tran, Cong-Trinh ;
Duong, Van-Hiep ;
Ngo, Phuc-Quan .
IEEE ACCESS, 2024, 12 :54339-54351
[33]   T6D-Direct: Transformers for Multi-object 6D Pose Direct Regression [J].
Amini, Arash ;
Periyasamy, Arul Selvam ;
Behnke, Sven .
PATTERN RECOGNITION, DAGM GCPR 2021, 2021, 13024 :530-544
[34]   Holistic and local patch framework for 6D object pose estimation in RGB-D images [J].
Zhang, Haoruo ;
Cao, Qixin .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 180 :59-73
[35]   A Comprehensive Review on 3D Object Detection and 6D Pose Estimation With Deep Learning [J].
Hoque, Sabera ;
Arafat, Md. Yasir ;
Xu, Shuxiang ;
Maiti, Ananda ;
Wei, Yuchen .
IEEE ACCESS, 2021, 9 :143746-143770
[36]   6D Pose Estimation Network in Complex Point Cloud Scenes [J].
Chen Haiyong ;
Li Longteng ;
Chen Peng ;
Meng Rui .
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (05) :1591-1601
[37]   Orientation Keypoints for 6D Human Pose Estimation [J].
Fisch, Martin ;
Clark, Ronald .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) :10145-10158
[38]   Learning latent geometric consistency for 6D object pose estimation in heavily cluttered scenes [J].
Li, Qingnan ;
Hu, Ruimin ;
Xiao, Jing ;
Wang, Zhongyuan ;
Chen, Yu .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2020, 70
[39]   Category-Level 6D Object Pose Estimation With Structure Encoder and Reasoning Attention [J].
Liu, Jierui ;
Cao, Zhiqiang ;
Tang, Yingbo ;
Liu, Xilong ;
Tan, Min .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) :6728-6740
[40]   6D Object Pose Tracking with Optical Flow Network for Robotic Manipulation [J].
Chen, Tao ;
Gu, Dongbing .
IFAC PAPERSONLINE, 2023, 56 (02) :8048-8053