Multi Task-Guided 6D Object Pose Estimation

被引:0
作者
Thu-Uyen Nguyen [1 ]
Van-Duc Vu [1 ]
Van-Thiep Nguyen [1 ]
Ngoc-Anh Hoang [1 ]
Duy-Quang Vu [1 ]
Duc-Thanh Tran [1 ]
Khanh-Toan Phan [1 ]
Anh-Truong Mai [1 ]
Van-Hiep Duong [1 ]
Cong-Trinh Chan [1 ]
Ngoc-Trung Ho [1 ]
Quang-Tri Duong [1 ]
Phuc-Quan Ngo [1 ]
Dinh-Cuong Hoang [1 ]
机构
[1] FPT Univ Hanoi, Hanoi, Vietnam
来源
PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION TECHNOLOGY, ICIIT 2024 | 2024年
关键词
Pose estimation; robot vision systems; intelligent systems; deep learning; supervised learning; machine vision;
D O I
10.1145/3654522.3654576
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Object pose estimation remains a fundamental challenge in computer vision, with cutting-edge methods relying on both RGB and depth data. Depth information is pivotal, offering crucial geometric cues that enable algorithms to navigate occlusions, fostering a more comprehensive scene under-standing and precise pose estimation. However, RGBD-based methods often require specialized depth sensors, which can be costlier and less accessible compared to standard RGB cameras. Consequently, research has explored techniques aiming to estimate object pose solely from color images. Yet, the absence of depth cues poses challenges in handling occlusions, comprehending object geometry, and resolving ambiguities arising from similar colors or textures. This paper introduces a end-to-end multi-task-guided object pose estimation method, utilizing RGB images as input and producing the 6D pose of multiple object instances. While our approach employs both depth and color images during training, inference relies solely on color images. We incorporate depth images to supervise a depth estimation branch, generating depth-aware features further refined through a cross-task attention module. These enhanced features are pivotal for our object pose estimation. Our method's innovation lies in significantly enhancing feature discriminability and robustness for object pose estimation. Through extensive experiments, we demonstrate competitive performance compared to state-of-the-art methods in object pose estimation.
引用
收藏
页码:215 / 222
页数:8
相关论文
共 50 条
[21]   Deep Fusion for Multi-Modal 6D Pose Estimation [J].
Lin, Shifeng ;
Wang, Zunran ;
Zhang, Shenghao ;
Ling, Yonggen ;
Yang, Chenguang .
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (04) :6540-6549
[22]   Dense Color Constraints based 6D object pose estimation from RGB-D images [J].
Wang, Zilun ;
Liu, Yi ;
Xu, Chi .
2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, :6416-6420
[23]   Multi-pyramid-based hierarchical template matching for 6D pose estimation in industrial grasping task [J].
Chai, Ziqi ;
Liu, Chao ;
Xiong, Zhenhua .
INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2023, 50 (04) :659-672
[24]   FusionNet: An End-to-End Hybrid Model for 6D Object Pose Estimation [J].
Ye, Yuning ;
Park, Hanhoon .
ELECTRONICS, 2023, 12 (19)
[25]   Object Detection and 6D Pose Estimation for Precise Robotic Manipulation in Unstructured Environments [J].
di Castro, Mario ;
Camarero Vera, Jorge ;
Ferre, Manuel ;
Masi, Alessandro .
INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, ICINCO 2017, 2020, 495 :392-403
[26]   6D Object Pose Estimation With Compact Generalized Non-Local Operation [J].
Jiang, Changhong ;
Mu, Xiaoqiao ;
Zhang, Bingbing ;
Liang, Chao ;
Xie, Mujun .
IEEE ACCESS, 2024, 12 :178080-178088
[27]   6D Object Pose Estimation Algorithm Using Preprocessing of Segmentation and Keypoint Extraction [J].
Zhang, Yan ;
Zhang, Chen ;
Rosenberger, Maik ;
Notni, Gunther .
2020 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC 2020, 2020,
[28]   MULTISTREAM VALIDNET: IMPROVING 6D OBJECT POSE ESTIMATION BY AUTOMATIC MULTISTREAM VALIDATION [J].
Mazumder, Joy ;
Zand, Mohsen ;
Greenspan, Michael .
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, :3143-3147
[29]   A 6D Object Pose Estimation Algorithm for Autonomous Docking with Improved Maximal Cliques [J].
Han, Zhenqi ;
Liu, Lizhuang .
SENSORS, 2025, 25 (01)
[30]   Multiple geometry representations for 6D object pose estimation in occluded or truncated scenes [J].
Wang, Jichun ;
Qiu, Lemiao ;
Yi, Guodong ;
Zhang, Shuyou ;
Wang, Yang .
PATTERN RECOGNITION, 2022, 132