High-Impedance Fault Section Location for Distribution Networks Based on T-Distributed Stochastic Neighbor Embedding and Variable Mode Decomposition

被引:0
|
作者
Yin, Zhihua [1 ]
Zheng, Yuping [2 ]
Wei, Zhinong [1 ]
Sun, Guoqiang [1 ]
Chen, Sheng [1 ]
Zang, Haixiang [1 ]
机构
[1] Hohai Univ, Coll Energy & Elect Engn, Nanjing 210098, Peoples R China
[2] NARI Grp Corp, State Key Lab Smart Grid Protect & Control, Nanjing 211106, Peoples R China
关键词
Circuit faults; Transient analysis; Feature extraction; Current measurement; Noise measurement; Grounding; Distribution networks; High-impedance fault; noise interference; fault section location; t-distributed stochastic neighbor embedding (t-SNE); transient zero-sequence current; FEEDER DETECTION; SINGLE-PHASE; IDENTIFICATION;
D O I
10.35833/MPCE.2023.000225
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
When high-impedance faults (HIFs) occur in resonant grounded distribution networks, the current that flows is extremely weak, and the noise interference caused by the distribution network operation and the sampling error of the measurement devices further masks the fault characteristics. Consequently, locating a fault section with high sensitivity is difficult. Unlike existing technologies, this study presents a novel fault feature identification framework that addresses this issue. The framework includes three key steps: <Circled Digit One> utilizing the variable mode decomposition (VMD) method to denoise the fault transient zero-sequence current (TZSC); <Circled Digit Two> employing a manifold learning algorithm based on t-distributed stochastic neighbor embedding (t-SNE) to further reduce the redundant information of the TZSC after denoising and to visualize fault information in high-dimensional 2D space; and <Circled Digit Three> classifying the signal of each measurement point based on the fuzzy clustering method and combining the network topology structure to determine the fault section location. Numerical simulations and field testing confirm that the proposed method accurately detects the fault location, even under the influence of strong noise interference.
引用
收藏
页码:1495 / 1505
页数:11
相关论文
共 20 条
  • [1] High-Impedance Fault Detection Method Based on Stochastic Resonance For a Distribution Network With Strong Background Noise
    Wang, Xiaowei
    Wei, Xiangxiang
    Gao, Jie
    Song, Guobing
    Kheshti, Mostafa
    Guo, Liang
    IEEE TRANSACTIONS ON POWER DELIVERY, 2022, 37 (02) : 1004 - 1016
  • [2] Faulty Feeder Detection Under High-Impedance Fault for Active Distribution Networks in Resonant Grounding Mode
    Wang, Xiaowei
    Wang, Xue
    Liu, Weibo
    Gao, Jie
    Wei, Xiangxiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [3] Combining t-Distributed Stochastic Neighbor Embedding With Convolutional Neural Networks for Hyperspectral Image Classification
    Gao, Lianru
    Gu, Daixin
    Zhuang, Lina
    Ren, Jinchang
    Yang, Dong
    Zhang, Bing
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (08) : 1368 - 1372
  • [4] Chatter Detection Approach Based on Wavelet Synchrosqueezing and t-Distributed Stochastic Neighbor Embedding for a Turning Process
    Kuo, Ping-Huan
    Lin, Po-Lun
    Yau, Her-Terng
    IEEE SENSORS JOURNAL, 2024, 24 (07) : 9660 - 9670
  • [5] Industrial process data visualization based on a deep enhanced t-distributed stochastic neighbor embedding neural network
    Lu, Weipeng
    Yan, Xuefeng
    ASSEMBLY AUTOMATION, 2022, 42 (02) : 268 - 277
  • [6] Visualizing high-dimensional industrial process based on deep reinforced discriminant features and a stacked supervised t-distributed stochastic neighbor embedding network
    Lu, Weipeng
    Yan, Xuefeng
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 186
  • [7] High-impedance fault detection in distribution networks with use of wavelet-based algorithm
    Michalik, Marek
    Rebizant, Waldemar
    Lukowicz, Miroslaw
    Lee, Seung-Jae
    Kang, Sang-Hee
    IEEE TRANSACTIONS ON POWER DELIVERY, 2006, 21 (04) : 1793 - 1802
  • [8] High-impedance Fault Detection Method Based on Feature Extraction and Synchronous Data Divergence Discrimination in Distribution Networks
    Liu, Yang
    Zhao, Yanlei
    Wang, Lei
    Fang, Chen
    Xie, Bangpeng
    Cui, Laixi
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2023, 11 (04) : 1235 - 1246
  • [9] High-impedance fault detection method based on sparse data divergence discrimination in distribution networks
    Cui, Laixi
    Liu, Yang
    Wang, Lei
    Chen, Jian
    Zhang, Xue
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 223
  • [10] An improved high-impedance fault identification scheme for distribution networks based on kernel extreme learning machine
    Sheng, Wanxing
    Liu, Keyan
    Jia, Dongli
    Wang, Yao
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 155