Accelerating the discovery of type II photosensitizer: Experimentally validated machine learning models for predicting the singlet oxygen quantum yield of photosensitive molecule

被引:0
作者
He, Liqiang [1 ]
Dong, Jiapeng [1 ]
Yang, Yuhang [1 ]
Huang, Zihui [1 ]
Ye, Shipian [1 ]
Ke, Xintong [1 ]
Zhou, Yuting [1 ]
Li, Andi [1 ]
Zhang, Zhiwen [1 ]
Wu, Siwei [1 ]
Wang, Yang [1 ]
Cai, Shuting [2 ]
Liu, Xujie [1 ]
He, Yan [1 ]
机构
[1] Guangdong Univ Technol, Sch Biomed & Pharmaceut Sci, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Technol, Sch Integrated Circuits, Guangzhou 510006, Peoples R China
关键词
Photosensitizers; Singlet oxygen quantum yield; Machine learning; Quantum chemistry; Photodynamic therapy; PHOTODYNAMIC THERAPY; ENHANCED-FLUORESCENCE; CANCER; DERIVATIVES;
D O I
10.1016/j.molstruc.2024.139850
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photodynamic therapy (PDT) is an emerging cancer treatment that mainly relies on photosensitizer (PS) to generate singlet oxygen for tumor destruction. Developing PSs with high singlet oxygen quantum yields (SO-QYs) requires extensive experimentation, limiting their rapid screening. Herein, to streamline this process, this study introduces several machine learning (ML) models that accurately predicts SO-QY across various experimental conditions. The models' establishment is based on two feature matrices derived from Morgan fingerprints (MFPs) and descriptors (molecular descriptors and quantum chemical descriptors, MD_QCDs). Comparative and evaluative results indicate that the XGBoost model constructed with MFPs and the AdaBoost model constructed with MD_QCDs exhibit superior predictive performance, with R2 values of 0.8648 and 0.8460, respectively. Furthermore, by utilizing SHapley Additive exPlanations (SHAP) analysis and quantum chemistry, we analyzed that the iodine atoms and larger conjugated systems significantly influenced the SO-QY. Experimental validation, based on this analysis, demonstrates that our models not only possess excellent predictive capabilities but also exhibit strong interpretability. In summary, this work has established several interpretable models with outstanding predictive performance, which can aid in the more rapid screening of PSs, thus promoting their application in PDT.
引用
收藏
页数:10
相关论文
共 67 条
  • [1] Photodynamic Therapy of Cancer: An Update
    Agostinis, Patrizia
    Berg, Kristian
    Cengel, Keith A.
    Foster, Thomas H.
    Girotti, Albert W.
    Gollnick, Sandra O.
    Hahn, Stephen M.
    Hamblin, Michael R.
    Juzeniene, Asta
    Kessel, David
    Korbelik, Mladen
    Moan, Johan
    Mroz, Pawel
    Nowis, Dominika
    Piette, Jacques
    Wilson, Brian C.
    Golab, Jakub
    [J]. CA-A CANCER JOURNAL FOR CLINICIANS, 2011, 61 (04) : 250 - 281
  • [2] Iodinated cyanine dyes: a new class of sensitisers for use in NIR activated photodynamic therapy (PDT)
    Atchison, Jordan
    Kamila, Sukanta
    Nesbitt, Heather
    Logan, Kieran A.
    Nicholas, Dean M.
    Fowley, Colin
    Davis, James
    Callan, Bridgeen
    McHale, Anthony P.
    Callan, John F.
    [J]. CHEMICAL COMMUNICATIONS, 2017, 53 (12) : 2009 - 2012
  • [3] Bastanlar Y, 2014, METHODS MOL BIOL, V1107, P105, DOI 10.1007/978-1-62703-748-8_7
  • [4] A Structure-Based Drug Discovery Paradigm
    Batool, Maria
    Ahmad, Bilal
    Choi, Sangdun
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (11)
  • [5] Singlet oxygen generation by porphyrins and metalloporphyrins revisited: A quantitative structure-property relationship (QSPR) study
    Buglak, Andrey A.
    Filatov, Mikhail A.
    Althaf Hussain, M.
    Sugimoto, Manabu
    [J]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2020, 403
  • [6] Quantitative Structure-Property Relationship Modelling for the Prediction of Singlet Oxygen Generation by Heavy-Atom-Free BODIPY Photosensitizers
    Buglak, Andrey A.
    Charisiadis, Asterios
    Sheehan, Aimee
    Kingsbury, Christopher J.
    Senge, Mathias O.
    Filatov, Mikhail A.
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (38) : 9934 - 9947
  • [7] A mobile robotic chemist
    Burger, Benjamin
    Maffettone, Phillip M.
    Gusev, Vladimir V.
    Aitchison, Catherine M.
    Bai, Yang
    Wang, Xiaoyan
    Li, Xiaobo
    Alston, Ben M.
    Li, Buyi
    Clowes, Rob
    Rankin, Nicola
    Harris, Brandon
    Sprick, Reiner Sebastian
    Cooper, Andrew I.
    [J]. NATURE, 2020, 583 (7815) : 237 - +
  • [8] Bromo-Substituted Diketopyrrolopyrrole Derivative with Specific Targeting and High Efficiency for Photodynamic Therapy
    Cai, Yu
    Tang, Qianyun
    Wu, Xiujuan
    Si, Weili
    Zhang, Qi
    Huang, Wei
    Dong, Xiaochen
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (17) : 10737 - 10742
  • [9] Experimental selective choriocapillaris photothrombosis using a modified indocyanine green formulation
    Cardillo, J. A.
    Jorge, R.
    Costa, R. A.
    Nunes, S. M. T.
    Lavinsky, D.
    Kuppermann, B. D.
    Tedesco, A. C.
    Farah, M. E.
    [J]. BRITISH JOURNAL OF OPHTHALMOLOGY, 2008, 92 (02) : 276 - 280
  • [10] Molecular fingerprint similarity search in virtual screening
    Cereto-Massague, Adria
    Jose Ojeda, Maria
    Valls, Cristina
    Mulero, Miguel
    Garcia-Vallve, Santiago
    Pujadas, Gerard
    [J]. METHODS, 2015, 71 : 58 - 63