BEForeGAN: An image-based deep generative approach for day-ahead forecasting of building HVAC energy consumption
被引:2
作者:
Ma, Yichuan X.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Fac Engn, Dept Elect & Elect Engn, Hong Kong, Peoples R China
YiQing MetaMuses Labs, Environm & Energy Lab, Hong Kong, Peoples R ChinaUniv Hong Kong, Fac Engn, Dept Elect & Elect Engn, Hong Kong, Peoples R China
Ma, Yichuan X.
[1
,2
]
Yeung, Lawrence K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Fac Engn, Dept Elect & Elect Engn, Hong Kong, Peoples R ChinaUniv Hong Kong, Fac Engn, Dept Elect & Elect Engn, Hong Kong, Peoples R China
Yeung, Lawrence K.
[1
]
机构:
[1] Univ Hong Kong, Fac Engn, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[2] YiQing MetaMuses Labs, Environm & Energy Lab, Hong Kong, Peoples R China
Generative adversarial network;
Machine learning;
Building energy consumption;
Short-term prediction;
Data-driven prediction;
Gramian angular field;
Generative AI;
PREDICTION;
D O I:
10.1016/j.apenergy.2024.124196
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
This study presents a pioneering approach in building energy forecasting by introducing a novel reformulation framework that transforms the forecasting task into an image inpainting problem. Based upon the fundamental notion that "forecasting is about generating data of the future", we propose BEForeGAN, an innovative deep generative approach for day-ahead Building HVAC Energy consumption Fore casting based on multi-channel conditional Generative Adversarial Networks (GANs) with U-Net generators. Our method is evaluated using 96,360 hourly HVAC energy consumption records from 11 buildings, demonstrating significant accuracy improvements of 17%similar to 76% and a substantial variability reduction of 3%similar to 96% compared to a suite of conventional and deep learning benchmark models across individual-building and zero-shot cross-building forecasting tasks. Notably, BEForeGAN exhibits robustness to noisy inputs, with an increase below 3% in Coefficient of Variation of Root Mean Square Error (CV-RMSE) for each 10% noise increment. This study addresses critical gaps in existing literature by showcasing the untapped potential of GANs as standalone forecasters, advocating for further exploration of two-dimensional (2D) GAN-based methods in building energy forecasting, and emphasising the need for more studies focusing on cross-building forecasting tasks. In conclusion, our findings underscore the transformative impact of GANs in revolutionising building energy forecasting practices, paving the way for enhanced energy-efficient building management and beyond.
引用
收藏
页数:19
相关论文
共 59 条
[1]
[Anonymous], 2002, ASHRAE Research Summary - ASHRAE 1119-TRP, P1
机构:
Imperial Coll London, Biol Inspired Comp Vis Grp, London, EnglandImperial Coll London, Biol Inspired Comp Vis Grp, London, England
Creswell, Antonia
White, Tom
论文数: 0引用数: 0
h-index: 0
机构:
Victoria Univ Wellington, Sch Design, Wellington, New ZealandImperial Coll London, Biol Inspired Comp Vis Grp, London, England
White, Tom
Dumoulin, Vincent
论文数: 0引用数: 0
h-index: 0
机构:
Montreal Inst Learning Algorithms, Montreal, PQ, CanadaImperial Coll London, Biol Inspired Comp Vis Grp, London, England
Dumoulin, Vincent
Arulkumaran, Kai
论文数: 0引用数: 0
h-index: 0
机构:
Imperial Coll London, Dept Bioengn, London, England
Twitter Mag Pony, London, England
Microsoft Res, London, EnglandImperial Coll London, Biol Inspired Comp Vis Grp, London, England
Arulkumaran, Kai
Sengupta, Biswa
论文数: 0引用数: 0
h-index: 0
机构:
Imperial Coll London, London, England
Huawei Technol, Noahs Ark Lab, London, EnglandImperial Coll London, Biol Inspired Comp Vis Grp, London, England
Sengupta, Biswa
Bharath, Anil A.
论文数: 0引用数: 0
h-index: 0
机构:
Imperial Coll London, Dept Bioengn, London, England
Imperials Data Sci Inst, London, England
Inst Engn & Technol, London, England
Univ Cambridge, Signal Proc Grp, Cambridge, England
Cortex Vis Syst, London, EnglandImperial Coll London, Biol Inspired Comp Vis Grp, London, England
机构:
Shenzhen Univ, Dept Construct Management & Real Estate, Shenzhen, Peoples R ChinaShenzhen Univ, Dept Construct Management & Real Estate, Shenzhen, Peoples R China
Fan, Cheng
Sun, Yongjun
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Div Bldg Sci & Technol, Hong Kong, Peoples R ChinaShenzhen Univ, Dept Construct Management & Real Estate, Shenzhen, Peoples R China
Sun, Yongjun
Zhao, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Inst Refrigerat & Cryogen, Hangzhou, Zhejiang, Peoples R ChinaShenzhen Univ, Dept Construct Management & Real Estate, Shenzhen, Peoples R China
Zhao, Yang
Song, Mengjie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Frontier Sci, Dept Human & Engn Environm Studies, Tokyo, JapanShenzhen Univ, Dept Construct Management & Real Estate, Shenzhen, Peoples R China
Song, Mengjie
Wang, Jiayuan
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Dept Construct Management & Real Estate, Shenzhen, Peoples R ChinaShenzhen Univ, Dept Construct Management & Real Estate, Shenzhen, Peoples R China
机构:
Imperial Coll London, Biol Inspired Comp Vis Grp, London, EnglandImperial Coll London, Biol Inspired Comp Vis Grp, London, England
Creswell, Antonia
White, Tom
论文数: 0引用数: 0
h-index: 0
机构:
Victoria Univ Wellington, Sch Design, Wellington, New ZealandImperial Coll London, Biol Inspired Comp Vis Grp, London, England
White, Tom
Dumoulin, Vincent
论文数: 0引用数: 0
h-index: 0
机构:
Montreal Inst Learning Algorithms, Montreal, PQ, CanadaImperial Coll London, Biol Inspired Comp Vis Grp, London, England
Dumoulin, Vincent
Arulkumaran, Kai
论文数: 0引用数: 0
h-index: 0
机构:
Imperial Coll London, Dept Bioengn, London, England
Twitter Mag Pony, London, England
Microsoft Res, London, EnglandImperial Coll London, Biol Inspired Comp Vis Grp, London, England
Arulkumaran, Kai
Sengupta, Biswa
论文数: 0引用数: 0
h-index: 0
机构:
Imperial Coll London, London, England
Huawei Technol, Noahs Ark Lab, London, EnglandImperial Coll London, Biol Inspired Comp Vis Grp, London, England
Sengupta, Biswa
Bharath, Anil A.
论文数: 0引用数: 0
h-index: 0
机构:
Imperial Coll London, Dept Bioengn, London, England
Imperials Data Sci Inst, London, England
Inst Engn & Technol, London, England
Univ Cambridge, Signal Proc Grp, Cambridge, England
Cortex Vis Syst, London, EnglandImperial Coll London, Biol Inspired Comp Vis Grp, London, England
机构:
Shenzhen Univ, Dept Construct Management & Real Estate, Shenzhen, Peoples R ChinaShenzhen Univ, Dept Construct Management & Real Estate, Shenzhen, Peoples R China
Fan, Cheng
Sun, Yongjun
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Div Bldg Sci & Technol, Hong Kong, Peoples R ChinaShenzhen Univ, Dept Construct Management & Real Estate, Shenzhen, Peoples R China
Sun, Yongjun
Zhao, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Inst Refrigerat & Cryogen, Hangzhou, Zhejiang, Peoples R ChinaShenzhen Univ, Dept Construct Management & Real Estate, Shenzhen, Peoples R China
Zhao, Yang
Song, Mengjie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Frontier Sci, Dept Human & Engn Environm Studies, Tokyo, JapanShenzhen Univ, Dept Construct Management & Real Estate, Shenzhen, Peoples R China
Song, Mengjie
Wang, Jiayuan
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Dept Construct Management & Real Estate, Shenzhen, Peoples R ChinaShenzhen Univ, Dept Construct Management & Real Estate, Shenzhen, Peoples R China