Generalized weak Galerkin finite element method for linear elasticity interface problems

被引:0
作者
Wang, Yue [1 ]
Gao, Fuzheng [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear elasticity interface problems; Weak Galerkin finite element method; Generalized weak gradient; Generalized weak divergence; Error estimates;
D O I
10.1007/s11075-024-01904-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalized weak Galerkin finite element method for linear elasticity interface problems is presented. The generalized weak gradient (divergence) is consisted of classical gradient (divergence) and the solution of local problem. Thus, the finite element space can be extended to arbitrary combination of piecewise polynomial spaces. The error equation and error estimates are proved. The numerical results illustrate the efficiency and flexibility for different interfaces, partitions and combinations, the locking-free property, the well performance for low regularity solution in discrete energy, L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document} and L infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{\infty }$$\end{document} norms. Meanwhile, we present the numerical comparison between our algorithm and the weak Galerkin finite element algorithm to demonstrate the flexibility of our algorithm. In addition, for some cases, the convergence rates in numerical tests are obviously higher than the theoretical prediction for the smooth and low regularity solutions.
引用
收藏
页码:1005 / 1042
页数:38
相关论文
共 50 条
  • [41] BPS preconditioners for a weak Galerkin finite element method for 2D diffusion problems with strongly discontinuous coefficients
    Li, Binjie
    Xie, Xiaoping
    Zhang, Shiquan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (04) : 701 - 724
  • [42] A generalized weak Galerkin method for Oseen equation
    Qi, Wenya
    Seshaiyer, Padmanabhan
    Wang, Junping
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440
  • [43] Two-grid weak Galerkin finite element method for nonlinear parabolic equations
    Zhang, Jianghong
    Gao, Fuzheng
    Cui, Jintao
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 175 : 356 - 365
  • [44] The adaptive SAV weak Galerkin finite element method for the Allen-Cahn equation
    Liu, Ying
    Shen, Xiaoqin
    Guan, Zhen
    Nie, Yufeng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 151 : 449 - 460
  • [45] A weak Galerkin finite element method for indefinite time-harmonic Maxwell equations
    Xie, Yingying
    Tang, Ming
    Tang, Chunming
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 435
  • [46] THE WEAK GALERKIN FINITE ELEMENT METHOD FOR SOLVING THE TIME-DEPENDENT STOKES FLOW
    Wang, Xiuli
    Liu, Yuanyuan
    Zhai, Qilong
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2020, 17 (05) : 732 - 745
  • [47] The Convergence of the Bilinear and Linear Immersed Finite Element Solutions to Interface Problems
    He, Xiaoming
    Lin, Tao
    Lin, Yanping
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (01) : 312 - 330
  • [48] An absolutely stable weak Galerkin finite element method for the Darcy-Stokes problem
    Wang, Xiuli
    Zhai, Qilong
    Wang, Ruishu
    Jari, Rabeea
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 331 : 20 - 32
  • [49] A weak Galerkin finite element method for fourth-order parabolic singularly perturbed problems on layer adapted Shishkin mesh
    Raina, Aayushman
    Natesan, Srinivasan
    APPLIED NUMERICAL MATHEMATICS, 2025, 207 : 520 - 533
  • [50] The Weak Galerkin Method for Linear Hyperbolic Equation
    Zhai, Qilong
    Zhang, Ran
    Malluwawadu, Nolisa
    Hussain, Saqib
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 24 (01) : 152 - 166