Generalized weak Galerkin finite element method for linear elasticity interface problems

被引:0
|
作者
Wang, Yue [1 ]
Gao, Fuzheng [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear elasticity interface problems; Weak Galerkin finite element method; Generalized weak gradient; Generalized weak divergence; Error estimates;
D O I
10.1007/s11075-024-01904-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalized weak Galerkin finite element method for linear elasticity interface problems is presented. The generalized weak gradient (divergence) is consisted of classical gradient (divergence) and the solution of local problem. Thus, the finite element space can be extended to arbitrary combination of piecewise polynomial spaces. The error equation and error estimates are proved. The numerical results illustrate the efficiency and flexibility for different interfaces, partitions and combinations, the locking-free property, the well performance for low regularity solution in discrete energy, L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document} and L infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{\infty }$$\end{document} norms. Meanwhile, we present the numerical comparison between our algorithm and the weak Galerkin finite element algorithm to demonstrate the flexibility of our algorithm. In addition, for some cases, the convergence rates in numerical tests are obviously higher than the theoretical prediction for the smooth and low regularity solutions.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] Weak Galerkin finite element method for linear elasticity interface problems
    Peng, Hui
    Wang, Ruishu
    Wang, Xiuli
    Zou, Yongkui
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 439
  • [2] A Conforming Discontinuous Galerkin Finite Element Method for Linear Elasticity Interface Problems
    Wang, Yue
    Gao, Fuzheng
    Cui, Jintao
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (01)
  • [3] A Conforming Discontinuous Galerkin Finite Element Method for Linear Elasticity Interface Problems
    Yue Wang
    Fuzheng Gao
    Jintao Cui
    Journal of Scientific Computing, 2022, 92
  • [4] A locking-free weak Galerkin finite element method for linear elasticity problems
    Huo, Fuchang
    Wang, Ruishu
    Wang, Yanqiu
    Zhang, Ran
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 160 : 181 - 190
  • [5] A posteriori error estimate of a weak Galerkin finite element method for solving linear elasticity problems
    Liu, Chunmei
    Xie, Yingying
    Zhong, Liuqiang
    Zhou, Liping
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 173 : 47 - 59
  • [6] A weak Galerkin method for elasticity interface problems
    Wang, Chunmei
    Zhang, Shangyou
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 419
  • [7] Weak Galerkin finite element method for linear poroelasticity problems
    Gu, Shanshan
    Chai, Shimin
    Zhou, Chenguang
    Zhou, Jinhui
    APPLIED NUMERICAL MATHEMATICS, 2023, 190 : 200 - 219
  • [8] The weak Galerkin finite element method for Stokes interface problems with curved interface
    Yang, Lin
    Zhai, Qilong
    Zhang, Ran
    APPLIED NUMERICAL MATHEMATICS, 2025, 208 : 98 - 122
  • [9] A WEAK GALERKIN FINITE ELEMENT METHOD FOR THE LINEAR ELASTICITY PROBLEM IN MIXED FORM
    Wang, Ruishu
    Zhang, Ran
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2018, 36 (04) : 469 - 491
  • [10] A STABILIZER FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR THE LINEAR ELASTICITY EQUATIONS
    Feng, Yue
    Peng, Hui
    Wang, Ruishu
    Zou, Yongkui
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2024, 23 (08) : 1095 - 1115