Linstab2D: stability and resolvent analysis of compressible viscous flows in MATLAB

被引:2
|
作者
Martini, Eduardo [1 ]
Schmidt, Oliver [2 ]
机构
[1] Univ Poitiers, Inst Pprime, CNRS,ENSMA, Dept Fluides Therm Combust, 1 Bd Marie & Pierre Curie, F-86962 la Vienne, France
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA
关键词
Linear stability analysis; Resolvent analysis; Flow modelling; Transition to turbulence; FINITE-DIFFERENCE APPROXIMATIONS; CLOSED-LOOP CONTROL; LINEAR-STABILITY; ENERGY AMPLIFICATION; GLOBAL INSTABILITIES; ABSOLUTE INSTABILITY; ACOUSTIC MODES; FLUID-FLOWS; JET; DISTURBANCES;
D O I
10.1007/s00162-024-00706-0
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We present LinStab2D, an easy-to-use linear stability analysis MATLAB tool capable of handling complex domains, performing temporal and spatial linear stability, and resolvent analysis. We present the theoretical foundations of the code, including the linear stability and resolvent analysis frameworks, finite differences discretization schemes, and the Floquet ansatz. These concepts are explored in five different examples, highlighting and illustrating the different code capabilities, including mesh masking, mapping, imposition of boundary constraints, and the analysis of periodic flows using Cartesian or axisymmetric coordinates. These examples were constructed to be a departure point for studying other flows.
引用
收藏
页码:665 / 685
页数:21
相关论文
共 50 条
  • [1] Linear stability analysis of compressible vortex flows considering viscous effects
    Hyeonjin Lee
    Donghun Park
    Theoretical and Computational Fluid Dynamics, 2022, 36 : 799 - 820
  • [2] Linear stability analysis of compressible vortex flows considering viscous effects
    Lee, Hyeonjin
    Park, Donghun
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2022, 36 (05) : 799 - 820
  • [3] Resolvent Analysis of Compressible Laminar and Turbulent Cavity Flows
    Sun, Yiyang
    Liu, Qiong
    Cattafesta, Louis N., III
    Ukeiley, Lawrence S.
    Taira, Kunihiko
    AIAA JOURNAL, 2020, 58 (03) : 1046 - 1055
  • [4] The stability of one dimensional stationary flows of compressible viscous fluids
    Beirão da Veiga, H.
    Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 1990, 7 (04): : 259 - 268
  • [5] A biharmonic approach for the global stability analysis of 2D incompressible viscous flows
    Kalita, Jiten C.
    Gogoi, Bidyut B.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (15-16) : 6831 - 6849
  • [6] Compressible flows of viscous fluid in 3d channel
    Pořízková, Petra
    Kozel, Karel
    Horáček, Jaromír
    Lecture Notes in Computational Science and Engineering, 2015, 103 : 661 - 666
  • [7] 2-DIMENSIONAL COMPRESSIBLE VISCOUS SINK FLOWS
    SHUSSER, M
    WEIHS, D
    FLUID DYNAMICS RESEARCH, 1995, 15 (06) : 349 - 364
  • [8] THE STABILITY OF ONE-DIMENSIONAL STATIONARY FLOWS OF COMPRESSIBLE VISCOUS FLUIDS
    DAVEIGA, HB
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (04): : 259 - 268
  • [9] Spectral/hp methods for viscous compressible flows on unstructured 2D meshes
    Lomtev, I
    Quillen, CB
    Karniadakis, GE
    JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 144 (02) : 325 - 357
  • [10] THE GLOBAL STABILITY OF 2-D VISCOUS AXISYMMETRIC CIRCULATORY FLOWS
    Yin, Huicheng
    Zhang, Lin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (10) : 5065 - 5083