Application-Agnostic Auto-tuning of Open MPI Collectives using Bayesian Optimization

被引:0
作者
Jeannot, Emmanuel [1 ]
Lemarinier, Pierre [2 ]
Mercier, Guillaume [3 ]
Robert-Hayek, Sophie [4 ]
Sartori, Richard [5 ]
机构
[1] U Bordeaux, Labri, INRIA, Talence, France
[2] ATOS, Echirolles, France
[3] U Bordeaux, INRIA, Labri, Bordeaux INP, Talence, France
[4] U Lorraine, ATOS, Echirolles, France
[5] U Bordeaux, Labri, INRIA, ATOS, Echirolles, France
来源
2024 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, IPDPSW 2024 | 2024年
关键词
Message Passing Interface; High Performance Computing; Auto-tuning; Black-box optimization;
D O I
10.1109/IPDPSW63119.2024.00141
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
MPI implementations encompass a broad range of parameters that have a significant impact on performance, and these parameters vary based on the specific communication pattern. State-of the art solutions [25], [15] provide a per application tuning of these parameters which require to do the tuning for each application or redo it each time the application changes. Here, we propose an application-agnostic method that leverages Bayesian Optimization, a black-box optimization technique, to discover the optimal parametrization of collective comnunication. We conducted experiments on two HPC platforms, where we tune three Open MN parameters for four distinct collective operations and 18 message sizes. The results of our tuning exhibit an average execution-time improvement up to 48.4% compared to the default parametrization, closely aligning with the tuning achieved through exhaustive sampling. Additionally, our approach drastically reduces the tuning time by 95% in contrast to the exhaustive search, achieving a total search time of merely 6 hours instead of the original 134 hours. Furthermore, we apply our methodology to the NAS benchmarks, demonstrating its efficacy and application agnosticity in real-world scenarios.
引用
收藏
页码:771 / 780
页数:10
相关论文
共 40 条
  • [1] [Anonymous], 2012, 2012 INNOVATIVE PARA, DOI [10.1109/InPar.2012.6339587, DOI 10.1109/INPAR.2012.6339587]
  • [2] [Anonymous], 2011, OSU Micro-benchmarks 3.5
  • [3] [Anonymous], 1989, Statistical Science, DOI [10.1214/ss/1177012413, DOI 10.1214/SS/1177012413]
  • [4] Autotuning in High-Performance Computing Applications
    Balaprakash, Prasanna
    Dongarra, Jack
    Gamblin, Todd
    Hall, Mary
    Hollingsworth, Jeffrey K.
    Norris, Boyana
    Vuduc, Richard
    [J]. PROCEEDINGS OF THE IEEE, 2018, 106 (11) : 2068 - 2083
  • [5] Behzad B., 2015, P 10 PAR DAT STOR WO, P43
  • [6] Behzad B, 2013, INT CONF HIGH PERFOR
  • [7] Random forest in remote sensing: A review of applications and future directions
    Belgiu, Mariana
    Dragut, Lucian
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 114 : 24 - 31
  • [8] Cao Z., 2018, A Practical, Real-Time Auto-Tuning Framework for Storage Systems
  • [9] Cao Z, 2018, PROCEEDINGS OF THE 2018 USENIX ANNUAL TECHNICAL CONFERENCE, P893
  • [10] Chaarawi M, 2008, LECT NOTES COMPUT SC, V5205, P210, DOI 10.1007/978-3-540-87475-1_30