Room Impulse Response Reconstruction Using Pattern-Coupled Sparse Bayesian Learning With Spherical Waves

被引:1
|
作者
Feng, Xuelei [1 ,2 ]
Cheng, Jiazheng [1 ,2 ]
Chen, Simiao [1 ,2 ]
Shen, Yong [1 ,2 ]
机构
[1] Nanjing Univ, Key Lab Modern Acoust, Minist Educ, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Inst Acoust, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Sound field reconstruction; pattern-coupled hierarchical model; variational inference; SOUND FIELD; INTERPOLATION; REPRODUCTION; RECOVERY;
D O I
10.1109/LSP.2024.3427705
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a pattern-coupled structured sparse Bayesian learning method for reconstructing room impulse responses (RIRs) in the time domain. It exploits the temporal properties of RIRs for improved reconstruction performance. Existing Bayesian methods with time-dependent regularization exploit the physical knowledge that an RIR transitions from a highly-sparse early part to a non-sparse later part. Building on this foundation, the proposed method utilizes a pattern-coupled hierarchical Gaussian prior in both spatial and temporal dimensions, employing a triangular mesh for the spatial dimension. The inverse problem is solved via stochastic variational inference. Performance assessments with experimental measurements illustrate the effectiveness of the proposed method.
引用
收藏
页码:1925 / 1929
页数:5
相关论文
共 50 条
  • [31] Room Impulse Response Interpolation Using a Sparse Spatio-Temporal Representation of the Sound Field
    Antonello, Niccolo
    De Sena, Enzo
    Moonen, Marc
    Naylor, Patrick A.
    van Waterschoot, Toon
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2017, 25 (10) : 1929 - 1941
  • [32] Sound field reconstruction using block sparse Bayesian learning equivalent source method
    Bi, Chuan-Xing
    Zhang, Feng-Min
    Zhang, Xiao-Zheng
    Zhang, Yong-Bin
    Zhou, Rong
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2022, 151 (04): : 2378 - 2390
  • [33] Sub-sampled Doppler ultrasound reconstruction using block sparse Bayesian learning
    Lorintiu, Oana
    Liebgott, Herve
    Bernard, Olivier
    Friboulet, Denis
    2015 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2015,
  • [34] Three-dimensional source localization using sparse Bayesian learning on a spherical microphone array
    Ping, Guoli
    Fernandez-Grande, Efren
    Gerstoft, Peter
    Chu, Zhigang
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2020, 147 (06): : 3895 - 3904
  • [35] Radiation Pattern Reconstruction using Impulse Response from Non-anechoic Measurements
    Koh, Jinhwan
    De, Arijit
    Sarkar, Tapan K.
    2010 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2010,
  • [36] Sparse Reconstruction Using Block Sparse Bayesian Learning With Fast Marginalized Likelihood Maximization for Near-Infrared Spectroscopy
    Pan, Tianhong
    Wu, Chao
    Chen, Qi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [37] Low-Rank and Sparse Matrix Recovery for Hyperspectral Image Reconstruction Using Bayesian Learning
    Zhang, Yanbin
    Huang, Long-Ting
    Li, Yangqing
    Zhang, Kai
    Yin, Changchuan
    SENSORS, 2022, 22 (01)
  • [38] RevRIR: Joint Reverberant Speech and Room Impulse Response Embedding using Contrastive Learning with Application to Room Shape Classification
    Bittermani, Jacob
    Levi, Daniel
    Diamandi, Hilel Hagai
    Gannot, Sharon
    Rosenweini, Tal
    INTERSPEECH 2024, 2024, : 3280 - 3284
  • [39] Antenna Pattern Reconstruction from Measurements in a Reverberant Chamber using 3D Impulse Response
    Whesly, Cesar
    Cho, Won-il
    Koh, Jinhwan
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2019,
  • [40] Image Reconstruction in Electrical Capacitance Tomography Using ROI-Shrinkage Adaptive Block Sparse Bayesian Learning
    Suo, Peng
    Sun, Jiangtao
    Li, Xiaolin
    Sun, Shijie
    Xu, Lijun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72