Complex shape transparent Al2O3 fabricated by integrated Spark Plasma Sintering- Additive manufacturing technology

被引:3
作者
Torresani, Elisa [1 ]
Park, Cheolwoo [1 ]
Grippi, Thomas [1 ]
Haines, Chris [1 ,2 ]
Olevsky, Eugene A. [3 ]
机构
[1] San Diego State Univ, Coll Engn, San Diego, CA 92182 USA
[2] US Army, DEVCOM Army Res Lab, Aberdeen Proving Ground, MD USA
[3] Univ Calif La Jolla, NanoEngn, San Diego, CA USA
基金
美国国家科学基金会;
关键词
Complex shapes; Alumina; Transparent ceramics; Simulation; Spark plasma sintering; Additive manufacturing; ALPHA-ALUMINA; OPTICAL-PROPERTIES; GRAIN-GROWTH; MICROWAVE; CERAMICS; DENSIFICATION; LASER; FUNDAMENTALS; PARAMETERS; POWDER;
D O I
10.1016/j.ceramint.2024.05.458
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Spark plasma sintering (SPS) is one of the most promising technologies for producing polycrystalline transparent ceramics. However, it has limitations regarding the complexity of the geometries that can be produced. This study addresses these limitations by combining additive manufacturing techniques with spark plasma sintering. Additionally, a Multiphysics sintering model based on the continuum theory of sintering is employed to predict the outcomes of the SPS process, particularly the microstructure of the densified parts. As a result, the geometrically complex Al2O3 transparent parts manufactured in this study exhibit a uniform microstructure, high density (similar to 99 %), and a linear transmittance of 16 % at 490 mu m.
引用
收藏
页码:37332 / 37340
页数:9
相关论文
共 70 条
[1]  
[Anonymous], 2013, ASTM E112 13
[2]   Microstructural Evolution During Vacuum Sintering of Yttrium Aluminum Garnet Transparent Ceramics: Toward the Origin of Residual Porosity Affecting the Transparency [J].
Boulesteix, Remy ;
Maitre, Alexandre ;
Chretien, Lucie ;
Rabinovitch, Yoel ;
Salle, Christian .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (06) :1724-1731
[3]   THE ELECTRICAL-RESISTIVITY OF BORON-NITRIDE OVER THE TEMPERATURE-RANGE 700-DEGREES-C TO 1400-DEGREES-C [J].
CARPENTER, LG ;
KIRBY, PJ .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1982, 15 (07) :1143-1151
[4]   Microwave sintering of transparent alumina [J].
Cheng, JP ;
Agrawal, D ;
Zhang, YJ ;
Roy, R .
MATERIALS LETTERS, 2002, 56 (04) :587-592
[5]   Microwave reactive sintering to fully transparent aluminum oxynitride (ALON) ceramics [J].
Cheng, JP ;
Agrawal, D ;
Zhang, YJ ;
Roy, R .
JOURNAL OF MATERIALS SCIENCE LETTERS, 2001, 20 (01) :77-79
[6]   Development of an instrumented and automated single mode cavity for ceramic microwave sintering: Application to an alpha pure alumina powder [J].
Croquesel, Jeremy ;
Bouvard, Didier ;
Chaix, Jean-Marc ;
Carry, Claude P. ;
Saunier, Sebastien .
MATERIALS & DESIGN, 2015, 88 :98-105
[7]   Luminescent Er3+ doped transparent alumina ceramics [J].
Drdlikova, Katarina ;
Klement, Robert ;
Drdlik, Daniel ;
Spusta, Tomas ;
Galusek, Dusan ;
Maca, Karel .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2017, 37 (07) :2695-2703
[8]   Microwave sintering of Yb:YAG transparent laser ceramics [J].
Esposito, Laura ;
Piancastelli, Andreana ;
Bykov, Yury ;
Egorov, Sergei ;
Eremeev, Anatolii .
OPTICAL MATERIALS, 2013, 35 (04) :761-765
[9]  
German RM., 1996, Sintering theory and practice, P256
[10]   Improved transparency and hardness in α-alumina ceramics fabricated by high-pressure SPS of nanopowders [J].
Ghanizadeh, Shaghayegh ;
Grasso, Salvatore ;
Ramanujam, Prabhu ;
Vaidhyanathan, Bala ;
Binner, Jon ;
Brown, Peter ;
Goldwasser, Judah .
CERAMICS INTERNATIONAL, 2017, 43 (01) :275-281