Tip-Enhanced Raman Spectroscopy Coherence Length of 2D Materials: An Application to Graphene

被引:0
|
作者
Nadas, Rafael [1 ,2 ]
Correa, Raul [1 ]
Cancado, Luiz Gustavo [1 ]
Jorio, Ado [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
[2] FabNS, Res Dept, BR-31310260 Belo Horizonte, MG, Brazil
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2025年 / 262卷 / 03期
关键词
coherence length; graphene; tip-enhanced Raman spectroscopy;
D O I
10.1002/pssb.202400287
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Herein, a protocol is presented for determining the tip-enhanced Raman spectroscopy (TERS) coherence length (Lc) of the two main Raman bands of graphene. This method involves performing approach curve experiments and plotting the normalized areas of the G and 2D bands as a function of tip-sample distance. The resultant data are fitted using a specific TERS formula to extract Lc. The results indicate different coherence lengths for the G and 2D bands in graphene as LcG=(13 +/- 2)$L_{\text{c}}<^>{\text{G}} = \left(\right. 13 \pm 2 \left.\right)$ and Lc2D=(10 +/- 1)$L_{\text{c}}<^>{2 \text{D}} = \left(\right. 10 \pm 1 \left.\right)$ nm. While this protocol is specifically done for graphene, the underlying theoretical framework, based on mode symmetry, can be extended to other 2D materials, such as transition metal dichalcogenides. This demonstrates the versatility and potential of TERS in exploring the coherence properties of various 2D materials. (a) Approach curve experiment schematic with the tip (empty triangles) being pulled up. The red arrow shows the laser interacting with the sample and tip. (b,d) Averaged normalized G and 2D band areas vs. tip-sample distance. The theory (red line) gives the coherence lengths LcG=(13 +/- 2)$L_{\text{c}}<^>{\text{G}} = \left(\right. 13 \pm 2 \left.\right)$ and Lc2D=(10 +/- 1)$L_{\text{c}}<^>{2 \text{D}} = \left(\right. 10 \pm 1 \left.\right)$ nm.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Nanoscale chemical characterization of materials and interfaces by tip-enhanced Raman spectroscopy
    Bao, Yi-Fan
    Zhu, Meng-Yuan
    Zhao, Xiao-Jiao
    Chen, Hong-Xuan
    Wang, Xiang
    Ren, Bin
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (20) : 10044 - 10079
  • [32] Tip-enhanced Raman spectroscopy and related techniques in studies of biological materials
    Schmid, Thomas
    Sebesta, Aleksandar
    Stadler, Johannes
    Opilik, Lothar
    Balabin, Roman M.
    Zenobi, Renato
    SYNTHESIS AND PHOTONICS OF NANOSCALE MATERIALS VII, 2010, 7586
  • [33] Tip-Enhanced Resonance Couplings Revealed by High Vacuum Tip-Enhanced Raman Spectroscopy
    Sun, Mengtao
    Zhang, Zhenglong
    Chen, Li
    Xu, Hongxing
    ADVANCED OPTICAL MATERIALS, 2013, 1 (06): : 449 - 455
  • [34] Nanoindentation-enhanced tip-enhanced Raman spectroscopy
    Wang, Chih-Feng
    O'Callahan, Brian T.
    Krayev, Andrey
    El-Khoury, Patrick Z.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (24):
  • [35] Tip-Enhanced Raman Spectroscopy with Picosecond Pulses
    Klingsporn, Jordan M.
    Sonntag, Matthew D.
    Seideman, Tamar
    Van Duyne, Richard P.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (01): : 106 - 110
  • [36] Tip-enhanced Raman spectroscopy for surfaces and interfaces
    Wang, Xiang
    Huang, Sheng-Chao
    Huang, Teng-Xiang
    Su, Hai-Sheng
    Zhong, Jin-Hui
    Zeng, Zhi-Cong
    Li, Mao-Hua
    Ren, Bin
    CHEMICAL SOCIETY REVIEWS, 2017, 46 (13) : 4020 - 4041
  • [37] Depolarization effects in tip-enhanced Raman spectroscopy
    Merlen, A.
    Valmalette, J. C.
    Gucciardi, P. G.
    de la Chapelle, M. Lamy
    Frigoute, A.
    Ossikovskie, R.
    JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (10) : 1361 - 1370
  • [38] The Expanding Frontiers of Tip-Enhanced Raman Spectroscopy
    Schultz, Jeremy F.
    Mahapatra, Sayantan
    Li, Linfei
    Jiang, Nan
    APPLIED SPECTROSCOPY, 2020, 74 (11) : 1313 - 1340
  • [39] Digital operating tip-enhanced Raman spectroscopy
    Kim, Hwanhee
    Moon, Taeyoung
    Lee, Hyeongwoo
    Koo, Yeonjeong
    Kang, Mingu
    Park, Kyoung-Duck
    An, Sangmin
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2022, 81 (06) : 510 - 515
  • [40] Digital operating tip-enhanced Raman spectroscopy
    Hwanhee Kim
    Taeyoung Moon
    Hyeongwoo Lee
    Yeonjeong Koo
    Mingu Kang
    Kyoung-Duck Park
    Sangmin An
    Journal of the Korean Physical Society, 2022, 81 : 510 - 515