Tip-Enhanced Raman Spectroscopy Coherence Length of 2D Materials: An Application to Graphene

被引:0
作者
Nadas, Rafael [1 ,2 ]
Correa, Raul [1 ]
Cancado, Luiz Gustavo [1 ]
Jorio, Ado [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
[2] FabNS, Res Dept, BR-31310260 Belo Horizonte, MG, Brazil
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2025年 / 262卷 / 03期
关键词
coherence length; graphene; tip-enhanced Raman spectroscopy;
D O I
10.1002/pssb.202400287
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Herein, a protocol is presented for determining the tip-enhanced Raman spectroscopy (TERS) coherence length (Lc) of the two main Raman bands of graphene. This method involves performing approach curve experiments and plotting the normalized areas of the G and 2D bands as a function of tip-sample distance. The resultant data are fitted using a specific TERS formula to extract Lc. The results indicate different coherence lengths for the G and 2D bands in graphene as LcG=(13 +/- 2)$L_{\text{c}}<^>{\text{G}} = \left(\right. 13 \pm 2 \left.\right)$ and Lc2D=(10 +/- 1)$L_{\text{c}}<^>{2 \text{D}} = \left(\right. 10 \pm 1 \left.\right)$ nm. While this protocol is specifically done for graphene, the underlying theoretical framework, based on mode symmetry, can be extended to other 2D materials, such as transition metal dichalcogenides. This demonstrates the versatility and potential of TERS in exploring the coherence properties of various 2D materials. (a) Approach curve experiment schematic with the tip (empty triangles) being pulled up. The red arrow shows the laser interacting with the sample and tip. (b,d) Averaged normalized G and 2D band areas vs. tip-sample distance. The theory (red line) gives the coherence lengths LcG=(13 +/- 2)$L_{\text{c}}<^>{\text{G}} = \left(\right. 13 \pm 2 \left.\right)$ and Lc2D=(10 +/- 1)$L_{\text{c}}<^>{2 \text{D}} = \left(\right. 10 \pm 1 \left.\right)$ nm.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:5
相关论文
共 17 条
[1]  
Abbe E., 1873, ARCH MIKROSK ANAT, V9, P413, DOI [10.1007/BF02956173, DOI 10.1007/BF02956173]
[2]   Probing Spatial Phonon Correlation Length in Post-Transition Metal Monochalcogenide GaS Using Tip-Enhanced Raman Spectroscopy [J].
Alencar, R. S. ;
Rabelo, Cassiano ;
Miranda, Hudson L. S. ;
Vasconcelos, Thiago L. ;
Oliveira, Bruno S. ;
Ribeiro, Aroldo ;
Publio, Bruno C. ;
Ribeiro-Soares, Jenaina ;
Souza Filho, A. G. ;
Cancado, Luiz Gustavo ;
Jorio, Ado .
NANO LETTERS, 2019, 19 (10) :7357-7364
[3]   Spatial Coherence in Near-Field Raman Scattering [J].
Beams, Ryan ;
Cancado, Luiz Gustavo ;
Oh, Sang-Hyun ;
Jorio, Ado ;
Novotny, Lukas .
PHYSICAL REVIEW LETTERS, 2014, 113 (18)
[4]  
Canado L. G., 2014, PHYS REV X, V4, P031054
[5]  
Cardona M., 1984, TOPICS APPL PHYS
[6]   COHERENCE PROPERTIES OF LAMBERTIAN AND NONLAMBERTIAN SOURCES [J].
CARTER, WH ;
WOLF, E .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1975, 65 (09) :1067-1071
[7]  
Dresselhaus M., 2008, Group Theory: Application To The Physics Of Condensed Matter, V1st
[8]   Metallized tip amplification of near-field Raman scattering [J].
Hayazawa, N ;
Inouye, Y ;
Sekkat, Z ;
Kawata, S .
OPTICS COMMUNICATIONS, 2000, 183 (1-4) :333-336
[9]  
Hayes W., 2012, SCATTERING LIGHT CRY
[10]   Nano-Raman spectroscopy of 2D materials [J].
Jorio, Ado ;
Nadas, Rafael ;
Pereira, Andre G. ;
Rabelo, Cassiano ;
Gadelha, Andreij C. ;
Vasconcelos, Thiago L. ;
Zhang, Wenjin ;
Miyata, Yasumitsu ;
Saito, Riichiro ;
Costa, Marcia D. D. ;
Cancado, Luiz Gustavo .
2D MATERIALS, 2024, 11 (03)