Deep learning approach for automated segmentation of myocardium using bone scintigraphy single-photon emission computed tomography/computed tomography in patients with suspected cardiac amyloidosis

被引:2
作者
Bhattaru, Abhijit [1 ,2 ,3 ]
Rojulpote, Chaitanya [1 ,2 ]
Vidula, Mahesh [2 ]
Duda, Jeffrey [1 ]
Maclean, Matthew T. [1 ]
Swago, Sophia [1 ]
Thompson, Elizabeth [1 ]
Gee, James [1 ]
Pieretti, Janice [2 ]
Drachman, Brian [2 ]
Cohen, Adam [4 ]
Dorbala, Sharmila [5 ]
Bravo, Paco E. [1 ,2 ]
Witschey, Walter R. [1 ]
机构
[1] Univ Penn, Dept Radiol, Philadelphia, PA USA
[2] Univ Penn, Dept Cardiol, Philadelphia, PA USA
[3] Rutgers New Jersey Med Sch, Dept Med, Newark, NJ USA
[4] Univ Penn, Dept Oncol, Philadelphia, PA USA
[5] Brigham & Womens Hosp, Dept Radiol, Boston, MA USA
关键词
SPECT; CT; Cardiac amyloidosis; Deep learning; QUANTIFICATION; DIAGNOSIS;
D O I
10.1016/j.nuclcard.2024.101809
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: We employed deep learning to automatically detect myocardial boneseeking uptake as a marker of transthyretin cardiac amyloid cardiomyopathy (ATTRCM) in patients undergoing 99mTc-pyrophosphate (PYP) or hydroxydiphosphonate (HDP) single-photon emission computed tomography (SPECT)/computed tomography (CT). Methods: We identified a primary cohort of 77 subjects at Brigham and Women's Hospital and a validation cohort of 93 consecutive patients imaged at the University of Pennsylvania who underwent SPECT/CT with PYP and HDP, respectively, for evaluation of ATTR-CM. Global heart regions of interest (ROIs) were traced on CT axial slices from the apex of the ventricle to the carina. Myocardial images were visually scored as grade 0 (no uptake), 1 (uptake < ribs), 2 (uptake = ribs), and 3 (uptake > ribs). A 2D U-net architecture was used to develop whole-heart segmentations for CT scans. Uptake was determined by calculating a heart-to-blood pool (HBP) ratio between the maximal counts value of the total heart region and the maximal counts value of the most superior ROI. Results: Deep learning and ground truth segmentations were comparable (p = 0.63). A total of 42 (55%) patients had abnormal myocardial uptake on visual assessment. Automated quantification of the mean HBP ratio in the primary cohort was 3.1 +/- 1.4 versus 1.4 +/- 0.2 (p < 0.01) for patients with positive and negative cardiac uptake, respectively. The model had 100% accuracy in the primary cohort and 98% in the validation cohort. Conclusion: We have developed a highly accurate diagnostic tool for automatically segmenting and identifying myocardial uptake suggestive of ATTR-CM.
引用
收藏
页数:9
相关论文
共 21 条
[1]   Quantitative single photon emission computed tomography derived standardized uptake values on 99mTc-PYP scan in patients with suspected ATTR cardiac amyloidosis [J].
Avalon, Juan Carlo ;
Fuqua, Jacob ;
Deskins, Seth ;
Miller, Tyler ;
Conte, Justin ;
Martin, Daniel ;
Marano, Gary ;
Yanamala, Naveena ;
Mills, James ;
Bianco, Christopher ;
Patel, Brijesh ;
Seetharam, Karthik ;
Raylman, Raymond ;
Sengupta, Partho P. ;
Hamirani, Yasmin S. .
JOURNAL OF NUCLEAR CARDIOLOGY, 2023, 30 (01) :127-139
[2]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[3]   A reproducible evaluation of ANTs similarity metric performance in brain image registration [J].
Avants, Brian B. ;
Tustison, Nicholas J. ;
Song, Gang ;
Cook, Philip A. ;
Klein, Arno ;
Gee, James C. .
NEUROIMAGE, 2011, 54 (03) :2033-2044
[4]   Adverse Reactions to Iodinated Contrast Media [J].
Bottinor, Wendy ;
Polkampally, Pritam ;
Jovin, Ion .
INTERNATIONAL JOURNAL OF ANGIOLOGY, 2013, 22 (03) :149-153
[5]   Multicenter Study of Planar Technetium 99m Pyrophosphate Cardiac Imaging Predicting Survival for Patients With ATTR Cardiac Amyloidosis [J].
Castano, Adam ;
Haq, Muhammad ;
Narotsky, David L. ;
Goldsmith, Jeff ;
Weinberg, Richard L. ;
Morgenstern, Rachelle ;
Pozniakoff, Ted ;
Ruberg, Frederick L. ;
Miller, Edward J. ;
Berk, John L. ;
Dispenzieri, Angela ;
Grogan, Martha ;
Johnson, Geoffrey ;
Bokhari, Sabahat ;
Maurer, Mathew S. .
JAMA CARDIOLOGY, 2016, 1 (08) :880-889
[6]   Deep Learning for Cardiac Image Segmentation: A Review [J].
Chen, Chen ;
Qin, Chen ;
Qiu, Huaqi ;
Tarroni, Giacomo ;
Duan, Jinming ;
Bai, Wenjia ;
Rueckert, Daniel .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
[7]   ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 1 of 2-Evidence Base and Standardized Methods of Imaging [J].
Dorbala, Sharmila ;
Ando, Yukio ;
Bokhari, Sabahat ;
Dispenzieri, Angela ;
Falk, Rodney H. ;
Ferrari, Victor A. ;
Fontana, Marianna ;
Gheysens, Olivier ;
Gillmore, Julian D. ;
Glaudemans, Andor W. J. M. ;
Hanna, Mazen A. ;
Hazenberg, Bouke P. C. ;
Kristen, Arnt, V ;
Kwong, Raymond Y. ;
Maurer, Mathew S. ;
Merlini, Giampaolo ;
Miller, Edward J. ;
Moon, James C. ;
Murthy, Venkatesh L. ;
Quarta, C. Cristina ;
Rapezzi, Claudio ;
Ruberg, Frederick L. ;
Shah, Sanjiv J. ;
Slart, Riemer H. J. A. ;
Verberne, Hein J. ;
Bourque, Jamieson M. .
CIRCULATION-CARDIOVASCULAR IMAGING, 2021, 14 (07) :E000029
[8]   Combined PET and low-dose, noncontrast CT scanning obviates the need for additional diagnostic contrast-enhanced CT scans in patients undergoing staging or restaging for lymphoma [J].
Elstrom, R. L. ;
Leonard, J. P. ;
Coleman, M. ;
Brown, R. K. J. .
ANNALS OF ONCOLOGY, 2008, 19 (10) :1770-1773
[9]   AL (Light-Chain) Cardiac Amyloidosis A Review of Diagnosis and Therapy [J].
Falk, Rodney H. ;
Alexander, Kevin M. ;
Liao, Ronglih ;
Dorbala, Sharmila .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2016, 68 (12) :1324-1341
[10]   Diagnosis and treatment of cardiac amyloidosis: a position statement of the ESC Working Group on Myocardial and Pericardial Diseases [J].
Garcia-Pavia, Pablo ;
Rapezzi, Claudio ;
Adler, Yehuda ;
Arad, Michael ;
Basso, Cristina ;
Brucato, Antonio ;
Burazor, Ivana ;
Caforio, Alida L. P. ;
Damy, Thibaud ;
Eriksson, Urs ;
Fontana, Marianna ;
Gillmore, Julian D. ;
Gonzalez-Lopez, Esther ;
Grogan, Martha ;
Heymans, Stephane ;
Imazio, Massimo ;
Kindermann, Ingrid ;
Kristen, Arnt, V ;
Maurer, Mathew S. ;
Merlini, Giampaolo ;
Pantazis, Antonis ;
Pankuweit, Sabine ;
Rigopoulos, Angelos G. ;
Linhart, Ales .
EUROPEAN HEART JOURNAL, 2021, 42 (16) :1554-1568