Ordinary modules for vertex algebras of osp1|2n

被引:3
作者
Creutzig, Thomas [1 ]
Genra, Naoki [2 ]
Linshaw, Andrew [3 ]
机构
[1] FAU Erlangen, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[2] Univ Tokyo, Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan
[3] Univ Denver, Dept Math, Denver, CO 80210 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2024年 / 2024卷 / 817期
基金
加拿大自然科学与工程研究理事会;
关键词
TENSOR CATEGORIES; FUSION RULES; LIE-ALGEBRAS; W-ALGEBRAS; REPRESENTATIONS; SUPERALGEBRAS; RATIONALITY; COSETS;
D O I
10.1515/crelle-2024-0060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the affine vertex superalgebra V-k(osp(1|2n)) at generic level embeds in the equivariant W-algebra of sp2nsp2n times 4n4n free fermions. This has two corollaries: (1) it provides a new proof that, for generic , the coset Com(V-k(sp(2n)),V-k(os(p1|2n))) is isomorphic to W-l(sp(2n))W-l(sp(2n)) for l=-(n+1)+(k+n+1)/(2k+2n+1) , and (2) we obtain the decomposition of ordinaryV(k)(os(p1|2n)) -modules intoVk(sp2n)circle times W-l(sp2n)-modules. Next, if is an admissible level and l is a non-degenerate admissible level for sp(2n) , we show that the simple algebra L-k(osp(1|2n))L-k(os(p1|2n)) is an extension of the simple subalgebra L-k(sp(2n))circle times W-l(sp(2n)) . Using the theory of vertex superalgebra extensions, we prove that the category of ordinaryL(k)(osp(1|2n)) -modules is a semisimple, rigid vertex tensor supercategory with only finitely many inequivalent simple objects. It is equivalent to a certain subcategory of W-l(sp(2n)) -modules. A similar result also holds for the category of Ramond twisted modules. Due to a recent theorem of Robert McRae, we get as a corollary that categories of ordinary L-k(sp(2n)) -modules are rigid
引用
收藏
页码:1 / 31
页数:31
相关论文
共 60 条
[1]   Vanishing of cohomology associated to guantized Drinfeld-Sokolov reduction [J].
Arakawa, T .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (15) :729-767
[2]  
Arakawa T., 2024, PREPRINT
[3]  
Arakawa T., 2018, PREPRINT
[4]  
Arakawa T., 2021, PREPRINT
[5]  
Arakawa T, 2007, INVENT MATH, V169, P219, DOI 10.1007/s00222-007-0046-1
[6]   Urod algebras and Translation of W-algebras [J].
Arakawa, Tomoyuki ;
Creutzig, Thomas ;
Feigin, Boris .
FORUM OF MATHEMATICS SIGMA, 2022, 10
[7]   Arc Spaces and Chiral Symplectic Cores [J].
Arakawa, Tomoyuki ;
Moreau, Anne .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2021, 57 (3-4) :795-829
[8]   Quantum Langlands duality of representations of W-algebras [J].
Arakawa, Tomoyuki ;
Frenkel, Edward .
COMPOSITIO MATHEMATICA, 2019, 155 (12) :2235-2262
[9]   W-algebras as coset vertex algebras [J].
Arakawa, Tomoyuki ;
Creutzig, Thomas ;
Linshaw, Andrew R. .
INVENTIONES MATHEMATICAE, 2019, 218 (01) :145-195
[10]   Modularity of Relatively Rational Vertex Algebras and Fusion Rules of Principal Affine W-Algebras [J].
Arakawa, Tomoyuki ;
van Ekeren, Jethro .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 370 (01) :205-247