ON THE CLASS OF POSITIVE DISJOINT WEAK p-CONVERGENT OPERATORS

被引:0
作者
Retbi, Abderrahman [1 ]
Mellal, Beni [1 ]
机构
[1] Sultan Moulay Slimane Univ, Polydisciplinary Fac, BP 592, Beni Mellal, Morocco
来源
MATHEMATICA BOHEMICA | 2024年 / 149卷 / 03期
关键词
p-convergent operator; disjoint p-convergent operator; positive Schur property of order p; order continuous norm; Banach lattice; PROPERTY;
D O I
10.21136/MB.2023.0160-22
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and study the disjoint weak p-convergent operators in Banach lattices, and we give a characterization of it in terms of sequences in the positive cones. As an application, we derive the domination and the duality properties of the class of positive disjoint weak p-convergent operators. Next, we examine the relationship between disjoint weak p-convergent operators and disjoint p-convergent operators. Finally, we characterize order bounded disjoint weak p-convergent operators in terms of sequences in Banach lattices.
引用
收藏
页码:409 / 418
页数:10
相关论文
共 12 条
[1]   p-Convergent Operators and the p-Schur Property [J].
Alikhani, M. ;
Fakhar, M. ;
Zafarani, J. .
ANALYSIS MATHEMATICA, 2020, 46 (01) :1-12
[2]  
Aliprantis C.D., 2006, Positive Operators
[3]  
CASTILLO J., 1993, REV MATH, V6, P43
[4]   p-Converging operators and Dunford-Pettis property of order p [J].
Chen, Dongyang ;
Chavez-Dominguez, J. Alejandro ;
Li, Lei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (02) :1053-1066
[5]   ON THE p-SCHUR PROPERTY OF BANACH SPACES [J].
Dehghani, Mohammad B. ;
Moshtaghioun, S. Mohammad .
ANNALS OF FUNCTIONAL ANALYSIS, 2018, 9 (01) :123-136
[6]  
Diestel J, 1984, GRADUATE TEXTS MATH, V92
[7]  
DIESTEL J, 1995, CAMBRIDGE STUDIES AD, V43
[8]   COMPACT-OPERATORS IN BANACH-LATTICES [J].
DODDS, PG ;
FREMLIN, DH .
ISRAEL JOURNAL OF MATHEMATICS, 1979, 34 (04) :287-320
[9]  
DUNFORD N, 1958, PURE APPL MATH, V7
[10]   The p-Gelfand-Phillips property in spaces of operators and Dunford-Pettis like sets [J].
Ghenciu, I. .
ACTA MATHEMATICA HUNGARICA, 2018, 155 (02) :439-457