Unlocking the potential of CYGNSS for pan-tropical inland water mapping through multi-source data and transformer

被引:10
作者
Chen, Yuhan [1 ,2 ,3 ]
Yan, Qingyun [1 ,2 ,4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Environm Sci & Engn, Nanjing 210044, Peoples R China
[2] Minist Nat Resources, Technol Innovat Ctr Integrated Applicat Remote Sen, Nanjing 210044, Peoples R China
[3] Harbin Engn Univ, Qingdao Innovat & Dev Base Ctr, Qingdao 266000, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Remote Sensing & Geomat Engn, Nanjing 210044, Peoples R China
关键词
Cyclone Global Navigation Satellite System (CyGNSS); Global Navigation Satellite; System-Reflectometry (GNSS-R); Inland water mapping; Transformer;
D O I
10.1016/j.jag.2024.104122
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Cyclone Global Navigation Satellite System (CyGNSS) data are widely recognized for their sensitivity to inland water bodies. However, the detection of water bodies using single CyGNSS data is subject to uncertainties, presenting challenges for large-scale and accurate water system detection. In this study, we employ CyGNSS data for regression estimation to map inland water bodies. In comparison to previous studies, we incorporate additional constraints, including topographic factors, vegetation information, soil moisture, and latitude and longitude data. Leveraging the U-shaped structure, Swin Transformer, and ContextModule, we effectively extract water body distribution information, referred to as CFRT. Through rigorous performance comparison with prevalent deep learning models, our method demonstrates remarkable accuracy. The generated water percent exhibits notable consistency with the reference data, achieving a root mean square error (RMSE) of 7.15% and a mean intersection over union of 0.778 within the reachable area of the CyGNSS data. Our approach emphasizes the significance of utilizing multi-source data to substantially enhance the accuracy of CyGNSS water system detection.
引用
收藏
页数:12
相关论文
共 45 条
[31]   Unified Perceptual Parsing for Scene Understanding [J].
Xiao, Tete ;
Liu, Yingcheng ;
Zhou, Bolei ;
Jiang, Yuning ;
Sun, Jian .
COMPUTER VISION - ECCV 2018, PT V, 2018, 11209 :432-448
[32]  
Xie EZ, 2021, ADV NEUR IN, V34
[33]   Stand-Alone Retrieval of Sea Ice Thickness From FY-3E GNOS-R Data [J].
Xie, Yunjian ;
Yan, Qingyun .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 :1-5
[34]   Mapping Surface Water Fraction Over the Pan-Tropical Region Using CYGNSS Data [J].
Yan, Qingyun ;
Liu, Shuci ;
Chen, Tiexi ;
Jin, Shuanggen ;
Xie, Tao ;
Huang, Weimin .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 :1-14
[35]   Inland Water Mapping Based on GA-LinkNet From CyGNSS Data [J].
Yan, Qingyun ;
Chen, Yuhan ;
Jin, Shuanggen ;
Liu, Shuci ;
Jia, Yan ;
Zhen, Yinqing ;
Chen, Tiexi ;
Huang, Weimin .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
[36]   Pan-tropical soil moisture mapping based on a three-layer model from CYGNSS GNSS-R data [J].
Yan, Qingyun ;
Huang, Weimin ;
Jin, Shuanggen ;
Jia, Yan .
REMOTE SENSING OF ENVIRONMENT, 2020, 247
[37]   Sea Ice Thickness Measurement Using Spaceborne GNSS-R: First Results With TechDemoSat-1 Data [J].
Yan, Qingyun ;
Huang, Weimin .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 :577-587
[38]   Spaceborne GNSS-R Sea Ice Detection Using Delay-Doppler Maps: First Results From the UK TechDemoSat-1 Mission [J].
Yan, Qingyun ;
Huang, Weimin .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (10) :4795-4801
[39]   High temporal resolution quasi-global landscape soil freeze-thaw map from spaceborne GNSS-R technology and SMAP radiometer measurements [J].
Yang, Wentao ;
Guo, Fei ;
Zhang, Xiaohong ;
Zhang, Zhiyu ;
Zhu, Yifan .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 128
[40]   Mapping Surface Water Extents Using High-Rate Coherent Spaceborne GNSS-R Measurements [J].
Zhang, Jiahua ;
Morton, Y. Jade ;
Wang, Yang ;
Roesler, Carolyn J. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60