Quantum-enhanced mean value estimation via adaptive measurement

被引:0
|
作者
Wada, Kaito [1 ]
Fukuchi, Kazuma [1 ]
Yamamoto, Naoki [1 ,2 ]
机构
[1] Keio Univ, Dept Appl Phys & Phys Informat, 3-14-1 Hiyoshi, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
[2] Keio Univ, Quantum Comp Ctr, 3-14-1 Hiyoshi, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
来源
QUANTUM | 2024年 / 8卷
关键词
systems; e.g; 35]. Therefore; extensive investiga-;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum-enhanced (i.e., higher performance by quantum effects than any classical methods) mean value estimation of observables is a fundamental task in various quantum technologies; in particular, it is an essential subroutine in quantum computing algorithms. Notably, the quantum estimation theory identifies the ultimate precision of such an estimator, which is referred to as the quantum Cram & eacute;rRao (QCR) lower bound or equivalently the inverse of the quantum Fisher information. Because the estimation precision directly determines the performance of those quantum technological systems, it is highly demanded to develop a generic and practically implementable estimation method that achieves the QCR bound. Under imperfect conditions, however, such an ultimate and implementable estimator for quantum mean values has not been developed. In this paper, we propose a quantum-enhanced mean value estimation method in a depolarizing noisy environment that asymptotically achieves the QCR bound in the limit of a large number of qubits. To approach the QCR bound in a practical setting, the method adaptively optimizes the amplitude amplification and a specific measurement that can be implemented without any knowledge of state preparation. We provide a rigorous analysis for the statistical properties of the proposed adaptive estimator such as consistency and asymptotic normality. Furthermore, several numerical simulations are provided to demonstrate the effectiveness of the method, particularly showing that the estimator needs only a modest number of measurements to almost saturate the QCR bound.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Quantum-Enhanced Optomechanical Magnetometry
    Bilek, Jan
    Li, Bei-Bei
    Hoff, Ulrich B.
    Madsen, Lars
    Forstner, Stefan
    Prakash, Varun
    Schafermeier, Clemens
    Gehring, Tobias
    Bowen, Warwick P.
    Andersen, Ulrik L.
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [22] Quantum-enhanced nonlinear microscopy
    Casacio, Catxere A.
    Madsen, Lars S.
    Terrasson, Alex
    Waleed, Muhammad
    Barnscheidt, Kai
    Hage, Boris
    Taylor, Michael A.
    Bowen, Warwick P.
    NATURE, 2021, 594 (7862) : 201 - +
  • [23] Quantum-enhanced absorption refrigerators
    Correa, Luis A.
    Palao, Jose P.
    Alonso, Daniel
    Adesso, Gerardo
    SCIENTIFIC REPORTS, 2014, 4
  • [24] Quantum-enhanced information processing
    Mosca, M
    Jozsa, R
    Steane, A
    Ekert, A
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 358 (1765): : 261 - 279
  • [25] Quantum-enhanced magnetometry by phase estimation algorithms with a single artificial atom
    S. Danilin
    A. V. Lebedev
    A. Vepsäläinen
    G. B. Lesovik
    G. Blatter
    G. S. Paraoanu
    npj Quantum Information, 4
  • [26] Quantum-enhanced optical vibrometer
    Burdge, Geoffrey L.
    Wasilousky, Peter A.
    Silver, Michael
    Burberry, Lee
    Smith, Kevin H.
    Visone, Christopher
    Deibner, Bill
    Peach, Robert C.
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [27] Quantum-enhanced magnetometry by phase estimation algorithms with a single artificial atom
    Danilin, S.
    Lebedev, A. V.
    Vepsalainen, A.
    Lesovik, G. B.
    Blatter, G.
    Paraoanu, G. S.
    NPJ QUANTUM INFORMATION, 2018, 4
  • [28] Classical and quantum cost of measurement strategies for quantum-enhanced auxiliary field quantum Monte Carlo
    Kiser, Matthew
    Schroeder, Anna
    Anselmetti, Gian-Luca R.
    Kumar, Chandan
    Moll, Nikolaj
    Streif, Michael
    Vodola, Davide
    NEW JOURNAL OF PHYSICS, 2024, 26 (03):
  • [29] Quantum-enhanced filter: QFilter
    Parfait Atchade-Adelomou
    Guillermo Alonso-Linaje
    Soft Computing, 2022, 26 : 7167 - 7174
  • [30] Quantum-enhanced plasmonic sensing
    Dowran, Mohammadjavad
    Kumar, Ashok
    Lawrie, Benjamin J.
    Pooser, Raphael C.
    Marino, Alberto M.
    OPTICA, 2018, 5 (05): : 628 - 633