Neural Colour Correction for Indoor 3D Reconstruction Using RGB-D Data

被引:2
|
作者
Madeira, Tiago [1 ,2 ]
Oliveira, Miguel [1 ,3 ]
Dias, Paulo [1 ,2 ]
机构
[1] Univ Aveiro, Inst Elect & Informat Engn Aveiro IEETA, Intelligent Syst Associate Lab LASI, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, Dept Elect Telecommun & Informat DETI, P-3810193 Aveiro, Portugal
[3] Univ Aveiro, Dept Mech Engn DEM, P-3810193 Aveiro, Portugal
关键词
neural network; colour correction; 3D reconstruction; IMAGES;
D O I
10.3390/s24134141
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
With the rise in popularity of different human-centred applications using 3D reconstruction data, the problem of generating photo-realistic models has become an important task. In a multiview acquisition system, particularly for large indoor scenes, the acquisition conditions will differ along the environment, causing colour differences between captures and unappealing visual artefacts in the produced models. We propose a novel neural-based approach to colour correction for indoor 3D reconstruction. It is a lightweight and efficient approach that can be used to harmonize colour from sparse captures over complex indoor scenes. Our approach uses a fully connected deep neural network to learn an implicit representation of the colour in 3D space, while capturing camera-dependent effects. We then leverage this continuous function as reference data to estimate the required transformations to regenerate pixels in each capture. Experiments to evaluate the proposed method on several scenes of the MP3D dataset show that it outperforms other relevant state-of-the-art approaches.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] 3D Reconstruction of Indoor Scenes using a Single RGB-D Image
    Bokaris, Panagiotis-Alexandros
    Muselet, Damien
    Tremeau, Alain
    PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2017), VOL 6, 2017, : 394 - 401
  • [2] 3D Reconstruction of Indoor Scenes Using RGB-D Monocular Vision
    Liu, Sanmao
    Zhu, Wenqiu
    Zhang, Canqing
    Sun, Wenjing
    2016 INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM (ICRIS), 2016, : 1 - 7
  • [3] A Survey of Indoor 3D Reconstruction Based on RGB-D Cameras
    Zhu, Jinlong
    Gao, Changbo
    Sun, Qiucheng
    Wang, Mingze
    Deng, Zhengkai
    IEEE ACCESS, 2024, 12 : 112742 - 112766
  • [4] Robust 3D Reconstruction With an RGB-D Camera
    Wang, Kangkan
    Zhang, Guofeng
    Bao, Hujun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (11) : 4893 - 4906
  • [5] 3D Reconstruction with Mirrors and RGB-D Cameras
    Akay, Abdullah
    Akgul, Yusuf Sinan
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 3, 2014, : 325 - 334
  • [6] Multi-target 3D Reconstruction from RGB-D Data
    Gao, Yang
    Yao, Yuan
    Jiang, Yunliang
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (CSSE 2019), 2019,
  • [7] GeoRec: Geometry-enhanced semantic 3D reconstruction of RGB-D indoor scenes
    Huan, Linxi
    Zheng, Xianwei
    Gong, Jianya
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 186 : 301 - 314
  • [8] Grid Map Guided Indoor 3D Reconstruction for Mobile Robots with RGB-D Sensors
    Zhang, Boyu
    Zhang, Xuebo
    Chen, Xiang
    Fang, Yongchun
    2018 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2018, : 498 - 503
  • [9] Error Accuracy Estimation of 3D Reconstruction and 3D Camera Pose from RGB-D Data
    Ortiz-Fernandez, Luis E.
    Silva, Bruno M. F.
    Goncalves, Luiz M. G.
    2022 35TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2022), 2022, : 67 - 72
  • [10] High-quality indoor scene 3D reconstruction with RGB-D cameras: A brief review
    Jianwei Li
    Wei Gao
    Yihong Wu
    Yangdong Liu
    Yanfei Shen
    Computational Visual Media, 2022, 8 : 369 - 393