Joint Functional Independence of the Riemann Zeta-Function

被引:1
|
作者
Korolev, Maxim [1 ]
Laurincikas, Antanas [2 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Dept Number Theory, Gubkina Str 8, Moscow 119991, Russia
[2] Vilnius Univ, Inst Math, Fac Math & Informat, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
来源
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS | 2024年
关键词
Algebraic-differential independence; Functional independence; Gram function; Riemann zeta-function; Universality;
D O I
10.1007/s13226-024-00585-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By the Ostrowski theorem, the Riemann zeta-function zeta(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta (s)$$\end{document} does not satisfy any algebraic-differential equation. Voronin proved that the function zeta(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta (s)$$\end{document} does not satisfy algebraic-differential equation with continuous coefficients. In the paper, a joint generalization of the Voronin theorem is given, i. e., that a collection (zeta(s1),& ctdot;,zeta(sr))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\zeta (s_1), \dots , \zeta (s_r))$$\end{document} does not satisfy a certain algebraic-differential equation with continuous coefficients.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] On large spacing of the zeros of the Riemann zeta-function
    Feng, ShaoJi
    Wu, XiaoSheng
    JOURNAL OF NUMBER THEORY, 2013, 133 (08) : 2538 - 2566
  • [42] On the divisor function and the Riemann zeta-function in short intervals
    Aleksandar Ivić
    The Ramanujan Journal, 2009, 19 : 207 - 224
  • [43] On the Approximation by Mellin Transform of the Riemann Zeta-Function
    Korolev, Maxim
    Laurincikas, Antanas
    AXIOMS, 2023, 12 (06)
  • [44] On the distribution of values of the argument of the Riemann zeta-function
    Ivic, Aleksandar P.
    Korolev, Maxim A.
    JOURNAL OF NUMBER THEORY, 2019, 200 : 96 - 131
  • [45] On gaps between zeros of the Riemann zeta-function
    Feng, Shaoji
    Wu, Xiaosheng
    JOURNAL OF NUMBER THEORY, 2012, 132 (07) : 1385 - 1397
  • [46] AN APPLICATION OF GENERALIZED MOLLIFIERS TO THE RIEMANN ZETA-FUNCTION
    Sono, Keiju
    KYUSHU JOURNAL OF MATHEMATICS, 2018, 72 (01) : 35 - 69
  • [47] Discrete Schwartz distributions and the Riemann zeta-function
    Nicolae, Florin
    Verjovsky, Alberto
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2010, 41 (02): : 211 - 221
  • [48] BANDLIMITED APPROXIMATIONS AND ESTIMATES FOR THE RIEMANN ZETA-FUNCTION
    Carneiro, Emanuel
    Chirre, Andres
    Milinovich, Micah B.
    PUBLICACIONS MATEMATIQUES, 2019, 63 (02) : 601 - 661
  • [49] On integral representations for powers of the Riemann zeta-function
    Ivic, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 52 (3-4): : 469 - 495
  • [50] On the divisor function and the Riemann zeta-function in short intervals
    Ivic, Aleksandar
    RAMANUJAN JOURNAL, 2009, 19 (02): : 207 - 224