共 50 条
Joint Functional Independence of the Riemann Zeta-Function
被引:1
|作者:
Korolev, Maxim
[1
]
Laurincikas, Antanas
[2
]
机构:
[1] Russian Acad Sci, Steklov Math Inst, Dept Number Theory, Gubkina Str 8, Moscow 119991, Russia
[2] Vilnius Univ, Inst Math, Fac Math & Informat, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
来源:
关键词:
Algebraic-differential independence;
Functional independence;
Gram function;
Riemann zeta-function;
Universality;
D O I:
10.1007/s13226-024-00585-5
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
By the Ostrowski theorem, the Riemann zeta-function zeta(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta (s)$$\end{document} does not satisfy any algebraic-differential equation. Voronin proved that the function zeta(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta (s)$$\end{document} does not satisfy algebraic-differential equation with continuous coefficients. In the paper, a joint generalization of the Voronin theorem is given, i. e., that a collection (zeta(s1),& ctdot;,zeta(sr))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\zeta (s_1), \dots , \zeta (s_r))$$\end{document} does not satisfy a certain algebraic-differential equation with continuous coefficients.
引用
收藏
页数:6
相关论文