Joint Functional Independence of the Riemann Zeta-Function

被引:1
|
作者
Korolev, Maxim [1 ]
Laurincikas, Antanas [2 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Dept Number Theory, Gubkina Str 8, Moscow 119991, Russia
[2] Vilnius Univ, Inst Math, Fac Math & Informat, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
关键词
Algebraic-differential independence; Functional independence; Gram function; Riemann zeta-function; Universality;
D O I
10.1007/s13226-024-00585-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By the Ostrowski theorem, the Riemann zeta-function zeta(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta (s)$$\end{document} does not satisfy any algebraic-differential equation. Voronin proved that the function zeta(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta (s)$$\end{document} does not satisfy algebraic-differential equation with continuous coefficients. In the paper, a joint generalization of the Voronin theorem is given, i. e., that a collection (zeta(s1),& ctdot;,zeta(sr))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\zeta (s_1), \dots , \zeta (s_r))$$\end{document} does not satisfy a certain algebraic-differential equation with continuous coefficients.
引用
收藏
页数:6
相关论文
共 50 条