Statistical and machine learning models for location-specific crop yield prediction using weather indices

被引:1
|
作者
Ajith, S. [2 ]
Debnath, Manoj Kanti [2 ]
Karthik, R. [1 ]
机构
[1] Assam Agr Univ, Dept Entomol, Jorhat, India
[2] Uttar Banga Krishi Viswavidyalaya, Dept Agr Stat, Cooch Behar, India
关键词
Yield prediction; Penalized regression models; Artificial Neural Network; Support Vector Regression; Hyperparameter Optimization; Partial Least Square Regression; LEAST-SQUARES REGRESSION; SUPPORT VECTOR MACHINE; PRINCIPAL COMPONENTS REGRESSION; MULTIPLE LINEAR-REGRESSION; VARIABLE SELECTION; WINTER-WHEAT; NEURAL-NETWORK; RICE YIELD; SEED YIELD; REGULARIZATION;
D O I
10.1007/s00484-024-02763-w
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Crop yield prediction gains growing importance for all stakeholders in agriculture. Since the growth and development of crops are fully connected with many weather factors, it is inevitable to incorporate meteorological information into yield prediction mechanism. The changes in climate-yield relationship are more pronounced at a local level than across relatively large regions. Hence, district or sub-region-level modeling may be an appropriate approach. To obtain a location- and crop-specific model, different models with different functional forms have to be explored. This systematic review aims to discuss research papers related to statistical and machine-learning models commonly used to predict crop yield using weather factors. It was found that Artificial Neural Network (ANN) and Multiple Linear Regression were the most applied models. Support Vector Regression (SVR) model has a high success ratio as it performed well in most of the cases. The optimization options in ANN and SVR models allow us to tune models to specific patterns of association between weather conditions of a location and crop yield. ANN model can be trained using different activation functions with optimized learning rate and number of hidden layer neurons. Similarly, the SVR model can be trained with different kernel functions and various combinations of hyperparameters. Penalized regression models namely, LASSO and Elastic Net are better alternatives to simple linear regression. The nonlinear machine learning models namely, SVR and ANN were found to perform better in most of the cases which indicates there exists a nonlinear complex association between crop yield and weather factors.
引用
收藏
页码:2453 / 2475
页数:23
相关论文
共 50 条
  • [31] Performance Evaluation of Best Feature Subsets for Crop Yield Prediction Using Machine Learning Algorithms
    Gopal, Maya P. S.
    Bhargavi, R.
    APPLIED ARTIFICIAL INTELLIGENCE, 2019, 33 (07) : 621 - 642
  • [32] Multimodal Machine Learning Based Crop Recommendation and Yield Prediction Model
    Gopi, P. S. S.
    Karthikeyan, M.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (01) : 313 - 326
  • [33] Hybrid Deep Learning-based Models for Crop Yield Prediction
    Oikonomidis, Alexandros
    Catal, Cagatay
    Kassahun, Ayalew
    APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [34] Recommendations of crop yield and fertilizers using machine learning algorithm
    Senapati, Biswa Ranjan
    Sanskar
    Trishna, Aditi
    Swain, Rakesh Ranjan
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2022, 43 (05) : 1029 - 1037
  • [35] Machine Learning Models for Traffic Prediction on Arterial Roads Using Traffic Features and Weather Information
    Abduljabbar, Rusul
    Dia, Hussein
    Liyanage, Sohani
    APPLIED SCIENCES-BASEL, 2024, 14 (23):
  • [36] Yield prediction models for some wheat varieties with satellite-based drought indices and machine learning algorithms
    Akcapinar, Muhammed Cem
    Cakmak, Belgin
    IRRIGATION AND DRAINAGE, 2025, 74 (01) : 237 - 250
  • [37] Enrichment of Crop Yield Prophecy Using Machine Learning Algorithms
    Grace, R. Kingsy
    Induja, K.
    Lincy, M.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 31 (01) : 279 - 296
  • [38] Development of multistage crop yield estimation model using machine learning and deep learning techniques
    Aravind, K. S.
    Vashisth, Ananta
    Krishnan, P.
    Kundu, Monika
    Prasad, Shiv
    Meena, M. C.
    Lama, Achal
    Das, Pankaj
    Das, Bappa
    INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 2025, 69 (02) : 499 - 515
  • [39] Explainable machine learning models for corn yield prediction using UAV multispectral data☆
    Kumar, Chandan
    Dhillon, Jagman
    Huang, Yanbo
    Reddy, Krishna
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2025, 231
  • [40] Energy crop yield simulation and prediction system based on machine learning algorithm
    Zhang, Jie
    Liu, Zhidong
    TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 2023, 47 (06) : 972 - 982