Synergistic effects of combined application of biochar and arbuscular mycorrhizal fungi on the safe production of rice in cadmium contaminated soil

被引:3
|
作者
Zhao, Ting [1 ]
Wang, Li [1 ]
Yang, Jixian [1 ]
机构
[1] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm, 73 Huanghe Rd, Harbin 150090, Peoples R China
关键词
Straw biochar; Arbuscular mycorrhizal fungi; Cadmium polluted soil; Rhizosphere fixation; Bioavailability; MINERAL NUTRIENTS; METAL UPTAKE; GROWTH; CD; ACCUMULATION; PLANTS; ZN; PHYTOREMEDIATION; MOSSEAE; CHINA;
D O I
10.1016/j.scitotenv.2024.175499
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Arbuscular mycorrhizal fungi (AMF) have been shown to effectively mitigate the detrimental effects of heavy metal stress on their plant hosts. Nevertheless, the biological activities of AMF were concurrently compromised. Biochar (BC), as an abiotic factor, had the potential compensate for this limitation. To elucidate the synergistic effects of biotic and abiotic factors, a pot experiment was conducted to assess the impact of biochar and AMF on the growth, physiological traits, and genetic expression in rice plants subjected to Cd stress. The results demonstrated that biochar significantly increased the mycorrhizal colonization rate by 22.19 %, while the combined application of biochar and AMF led to a remarkable enhancement of rice root biomass by 42.2 %. This resulted in a shift in spatial growth patterns that preferentially promoted enhanced underground development. Biochar effectively mitigated the stomatal limitations imposed by Cd on photosynthetic processes. The decrease in IBRv2 (Integrated Biomarker Response version 2) values suggested that the antioxidant system was experiencing a state of remission. An increase of Cd content within the rice root systems was observed, ranging from 33.71 % to 48.71 %, accompanied by a reduction in Cd bioavailability and mobility curtailed its translocation to the aboveground tissues. Under conditions of low soil Cd concentration (Cd <= 1 mg center dot kg 1 ), the Cd content in rice seeds from the group subjected to the combined treatment remained below the national standard (Cd <= 0.2 mg center dot kg 1 ). Furthermore, the combined treatment modulated the uptake of Fe and Zn by rice, while simultaneously suppressing the expression of genes associated with Cd transport. Collectively, the integration of biological and abiotic factors provided a novel perspective and methodological framework for safe in-situ utilization of soils with low Cd contamination.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Synergistic effects of arbuscular mycorrhizal fungi and biochar are highly beneficial to Ligustrum lucidum seedlings in Cd-contaminated soil
    Li, Tiantian
    Yang, Huan
    Zhang, Naili
    Dong, Lijia
    Wu, Aiping
    Wu, Qiqian
    Zhao, Mingshui
    Liu, Hua
    Li, Yan
    Wang, Yanhong
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2024, 31 (07) : 11214 - 11227
  • [2] Effect of Arbuscular Mycorrhizal Fungi on Switchgrass Growth and Mineral Nutrition in Cadmium-Contaminated Soil
    Sun, Hong
    Fu, Jintao
    Yang, Fuyu
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2020, 29 (02): : 1369 - 1377
  • [3] A Critical Review of the Effectiveness of Biochar Coupled with Arbuscular Mycorrhizal Fungi in Soil Cadmium Immobilization
    Fang, Xin
    Lee, Xinqing
    Twagirayezu, Gratien
    Cheng, Hongguang
    Lu, Hongyu
    Huang, Shenglan
    Deng, Linbo
    Ji, Bo
    JOURNAL OF FUNGI, 2024, 10 (03)
  • [4] Effects of microplastics on cadmium accumulation by rice and arbuscular mycorrhizal fungal communities in cadmium-contaminated soil
    Liu, Yingying
    Cui, Wenzhi
    Li, Wenguang
    Xu, Shuang
    Sun, Yuhuan
    Xu, Guangjian
    Wang, Fayuan
    JOURNAL OF HAZARDOUS MATERIALS, 2023, 442
  • [5] Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil
    Liu, Ling
    Li, Jiwei
    Yue, Feixue
    Yan, Xinwei
    Wang, Fayuan
    Bloszies, Sean
    Wang, Yanfang
    CHEMOSPHERE, 2018, 194 : 495 - 503
  • [6] Effect of arbuscular mycorrhizal fungi on young vines in copper-contaminated soil
    Ambrosini, Vitor Gabriel
    Voges, Joana Gerent
    Canton, Ludiana
    Couto, Rafael da Rosa
    Avelar Ferreira, Paulo Ademar
    Comin, Jucinei Jose
    Bastos de Melo, George Wellington
    Brunetto, Gustavo
    Fonseca Sousa Soares, Claudio Roberto
    BRAZILIAN JOURNAL OF MICROBIOLOGY, 2015, 46 (04) : 1045 - 1052
  • [7] Arbuscular mycorrhizal fungi and organic manure have synergistic effects on Trifolium repens in Cd-contaminated sterilized soil but not in natural soil
    Xiao, Yan
    Zhao, Zhoujun
    Chen, Lu
    Li, Yang
    APPLIED SOIL ECOLOGY, 2020, 149
  • [8] Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa
    Zhang, Fengge
    Liu, Mohan
    Li, Yang
    Che, Yeye
    Xiao, Yan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 655 : 1150 - 1158
  • [9] Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead- contaminated soil by vetiver grass
    Bahraminia, Mahboobeh
    Zarei, Mehdi
    Ronaghi, Abdolmajid
    Ghasemi-Fasaei, Reza
    INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, 2016, 18 (07) : 730 - 737
  • [10] Biochar and arbuscular mycorrhizal fungi stimulate rice root growth strategy and soil nutrient availability
    Wen, Zhonghua
    Chen, Yixuan
    Liu, Zunqi
    Meng, Jun
    EUROPEAN JOURNAL OF SOIL BIOLOGY, 2022, 113