Estimating the Convex Hull of the Image of a Set with Smooth Boundary: Error Bounds and Applications

被引:0
作者
Lew, Thomas [1 ,2 ]
Bonalli, Riccardo [3 ]
Janson, Lucas [4 ]
Pavone, Marco [2 ]
机构
[1] Toyota Res Inst, Los Altos, CA 94022 USA
[2] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
[3] Univ Paris Saclay, Lab Signals & Syst, CNRS, CentraleSupelec, Paris, France
[4] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
Convex hull; Geometric inference; Manifold reconstruction; Reach; CONVERGENCE; RATES;
D O I
10.1007/s00454-024-00683-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the problem of estimating the convex hull of the image f(X)subset of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(X)\subset {\mathbb {R}}<^>n$$\end{document} of a compact set X subset of Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\subset {\mathbb {R}}<^>m$$\end{document} with smooth boundary through a smooth function f:Rm -> Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:{\mathbb {R}}<^>m\rightarrow {\mathbb {R}}<^>n$$\end{document}. Assuming that f is a submersion, we derive a new bound on the Hausdorff distance between the convex hull of f(X) and the convex hull of the images f(xi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x_i)$$\end{document} of M sampled inputs xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document} on the boundary of X. When applied to the problem of geometric inference from a random sample, our results give error bounds that are tighter and more general than in previous work. We present applications to the problems of robust optimization, of reachability analysis of dynamical systems, and of robust trajectory optimization under bounded uncertainty.
引用
收藏
页码:203 / 241
页数:39
相关论文
共 51 条
[1]  
Aamari E., 2017, THESIS U PARIS SACLA
[2]   Adversarial Manifold Estimation [J].
Aamari, Eddie ;
Knop, Alexander .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024, 24 (01) :1-97
[3]   Estimating the reach of a manifold [J].
Aamari, Eddie ;
Kim, Jisu ;
Chazal, Frederic ;
Michel, Bertrand ;
Rinaldo, Alessandro ;
Wasserman, Larry .
ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (01) :1359-1399
[4]   Stability and Minimax Optimality of Tangential Delaunay Complexes for Manifold Reconstruction [J].
Aamari, Eddie ;
Levrard, Clement .
DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 59 (04) :923-971
[5]   Minimax Estimation of the Volume of a Set Under the Rolling Ball Condition [J].
Arias-Castro, Ery ;
Pateiro-Lopez, Beatriz ;
Rodriguez-Casal, Alberto .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (527) :1162-1173
[6]   On the estimation of a star-shaped set [J].
Baíllo, A ;
Cuevas, A .
ADVANCES IN APPLIED PROBABILITY, 2001, 33 (04) :717-726
[7]   Robust convex optimization [J].
Ben-Tal, A ;
Nemirovski, A .
MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (04) :769-805
[8]   Estimating the Reach of a Manifold via its Convexity Defect Function [J].
Berenfeld, Clement ;
Harvey, John ;
Hoffmann, Marc ;
Shankar, Krishnan .
DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 67 (02) :403-438
[9]   Theory and Applications of Robust Optimization [J].
Bertsimas, Dimitris ;
Brown, David B. ;
Caramanis, Constantine .
SIAM REVIEW, 2011, 53 (03) :464-501
[10]  
Boissonnat Jean-Daniel, 2019, J Appl Comput Topol, V3, P29, DOI [10.1007/s41468-019-00029-8, 10.1007/s41468-019-00029-8]