Direct RGB-D visual odometry with point features

被引:0
|
作者
Yao, Zhigang [1 ,3 ]
An, Xu [2 ]
Charrier, Christophe [3 ]
Rosenberger, Christophe [3 ]
机构
[1] North China Univ Technol, Grad Sch, 5 Jinyuanzhuang Rd, Beijing 110043, Peoples R China
[2] Renmin Univ China, SARD, 59 Zhongguancun St, Beijing 100872, Peoples R China
[3] CNRS, UMR 6072, GREYC, 6, Bd Marchal Juin, F-14000 Caen, France
关键词
Visual odometry; RGB-D; Gaussian gradient; ROBUST;
D O I
10.1007/s11370-024-00559-w
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this paper, we propose a traditional semi-dense direct visual odometry (VO) based on our preliminary study using low-order Gaussian derivative functions for solving a VO problem with pure frame-by-frame point tracking. With the off-line fitting analysis of residual sets that we firstly performed to determine the coarse-to-fine framework, this study employs a simple local interpolation to enrich the searching space of the subsample of the original image. Without any processing for dealing with implementation acceleration, tracking lost and divergence problems, the proposed approach achieves relatively acceptable performance compared with baseline algorithms of both the direct approach and the matching-based data association algorithm. An experimental study is conducted using a group of TUM datasets and the reference VO algorithms.
引用
收藏
页码:1077 / 1089
页数:13
相关论文
共 50 条
  • [1] Robust RGB-D Visual Odometry Using Point and Line Features
    Sun, Chao
    Qiao, Nianzu
    Ge, Wei
    Sun, Jia
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 3826 - 3831
  • [2] Accurate and Robust RGB-D Visual Odometry Based on Point and Line Features
    Zhao, Guojie
    Zhang, Yupeng
    Liu, Peichu
    Wu, Haoen
    Cui, Mingyang
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2021, PT II, 2021, 12816 : 500 - 510
  • [3] Robust RGB-D Visual Odometry Based on Planar Features
    Chen, Baifan
    Liu, Chunfa
    Tong, Yu
    Wu, Qian
    2017 IEEE 7TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2017, : 449 - 453
  • [4] A RGB-D visual odometry method based on line features
    Huang P.
    Cao Z.
    Huang J.
    1600, Editorial Department of Journal of Chinese Inertial Technology (29): : 340 - 349
  • [5] Robust RGB-D Odometry Using Point and Line Features
    Lu, Yan
    Song, Dezhen
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 3934 - 3942
  • [6] Bi-direction Direct RGB-D Visual Odometry
    Cai, Jiyuan
    Luo, Lingkun
    Hu, Shiqiang
    APPLIED ARTIFICIAL INTELLIGENCE, 2020, 34 (14) : 1137 - 1158
  • [7] Direct RGB-D Visual Odometry Based on Hybrid Strategy
    Cai, Jiyuan
    Luo, Lingkun
    Yu, Qiuyu
    Liu, Bing
    Hu, Shiqiang
    IEEE SENSORS JOURNAL, 2021, 21 (20) : 23278 - 23288
  • [8] Dynamic RGB-D Visual Odometry
    Yang, Dongsheng
    Bi, Shusheng
    Cai, Yueri
    Zheng, Jingxiang
    Yuan, Chang
    2017 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE ROBIO 2017), 2017, : 941 - 946
  • [9] RGB-D visual odometry by constructing and matching features at superpixel level
    Yang, Meiyi
    Xiong, Junlin
    Li, Youfu
    ROBOTICA, 2024, 42 (08) : 2619 - 2634
  • [10] RGB-D Visual Odometry in Dynamic Environments Using Line Features
    Zhang H.
    Fang Z.
    Yang G.
    Jiqiren/Robot, 2019, 41 (01): : 75 - 82