Intelligent control techniques for maximum power point tracking in wind turbines

被引:7
作者
Munoz-Palomeque, Eduardo [1 ]
Sierra-Garcia, Jesus Enrique [1 ]
Santos, Matilde [2 ]
机构
[1] Univ Burgos, Dept Digitalizac, Burgos, Spain
[2] Univ Complutense Madrid, Inst Tecnol Conocimiento, Madrid, Spain
来源
REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL | 2024年 / 21卷 / 03期
关键词
Wind turbine; maximum power point tracking (MPPT); intelligent control; neural networks; fuzzy control; ARTIFICIAL NEURAL-NETWORK; CONTROL STRATEGY; ALGORITHM; SYSTEM;
D O I
10.4995/riai.2024.21097
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Maximum power point tracking (MPPT) is an essential stage in the operation of wind turbines to ensure efficient power generation. In recent years, advanced control techniques have been designed and applied to achieve this objective, solving some of the limitations of classical methods. This article provides an overview of existing strategies and describes some specific control configurations in more detail, explaining their usefulness and providing a basis for future developments. Specifically, it includes control techniques based on artificial intelligence for the study of MPPT control in wind turbines. Two intelligent control strategies are exemplified: a neural network and a fuzzy logic controller. These approaches are framed in the regulation of the electromagnetic torque of the generator and, consequently, the angular velocity of the system, improving power generation. The results show the benefits of these intelligent controllers to maximize power and improve the energy conversion process.
引用
收藏
页码:193 / 204
页数:12
相关论文
共 48 条
[1]  
Aissaoui HE, 2021, Advances in Science Technology and Engineering Systems Journal, V6, P586, DOI [10.25046/aj060267, 10.25046/aj060267, DOI 10.25046/AJ060267]
[2]   Innovative PID-GA MPPT Controller for Extraction of Maximum Power From Variable Wind Turbine [J].
Azzouz, Said ;
Messalti, Sabir ;
Harrag, Abdelghani .
PRZEGLAD ELEKTROTECHNICZNY, 2019, 95 (08) :115-120
[3]  
Benattous D., 2015, 2015 3 INT C CONTR E, P1, DOI [10.1109/CEIT.2015.7233139, DOI 10.1109/CEIT.2015.7233139]
[4]   Dynamic MPPT Controller Using Cascade Neural Network for a Wind Power Conversion System with Energy Management [J].
Chandrasekaran, K. ;
Mohanty, Madhusmita ;
Golla, Mallikarjuna ;
Venkadesan, A. ;
Simon, Sishaj P. .
IETE JOURNAL OF RESEARCH, 2022, 68 (05) :3316-3330
[5]   The state of the art of wind energy conversion systems and technologies: A review [J].
Cheng, Ming ;
Zhu, Ying .
ENERGY CONVERSION AND MANAGEMENT, 2014, 88 :332-347
[6]   Adaptive Neuro-Fuzzy Inference System-Based Maximum Power Tracking Controller for Variable Speed WECS [J].
Chhipa, Abrar Ahmed ;
Kumar, Vinod ;
Joshi, Raghuveer Raj ;
Chakrabarti, Prasun ;
Jasinski, Michal ;
Burgio, Alessandro ;
Leonowicz, Zbigniew ;
Jasinska, Elzbieta ;
Soni, Rajkumar ;
Chakrabarti, Tulika .
ENERGIES, 2021, 14 (19)
[7]   Integral sliding mode control for DFIG based WECS with MPPT based on artificial neural network under a real wind profile [J].
Chojaa, Hamid ;
Derouich, Aziz ;
Chehaidia, Seif Eddine ;
Zamzoum, Othmane ;
Taoussi, Mohammed ;
Elouatouat, Hasnae .
ENERGY REPORTS, 2021, 7 :4809-4824
[8]   MPPT Algorithm Based on Fuzzy Logic and Artificial Neural Network (ANN) for a Hybrid Solar/Wind Power Generation System [J].
Elaissaoui, Hayat ;
Zerouali, Mohammed ;
El Ougli, Abdelghani ;
Tidhaf, Belkassem .
2020 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS), 2020,
[9]   Wind turbine pitch reinforcement learning control improved by PID regulator and learning observer [J].
Enrique Sierra-Garcia, J. ;
Santos, Matilde ;
Pandit, Ravi .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 111
[10]  
George Teena, 2022, J. appl. res. technol, V20, P703, DOI [10.22201/icat.24486736e.2022.20.6.1256, 10.22201/icat.24486736e.2022.20.6.1256]